Matching Items (63)
Filtering by

Clear all filters

150836-Thumbnail Image.png
Description
Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical and Counter-Radical organizations and how they shape up over a period of time. Recognizing and supporting counter-radical organizations is one of the most important steps towards impeding radical organizations. A lot of research has already been done to categorize and recognize organizations, to understand their behavior, their interactions with other organizations, their target demographics and the area of influence. We have a huge amount of information which is a result of the research done over these topics. This thesis provides a powerful and interactive way to navigate through all this information, using a Visualization Dashboard. The dashboard makes it easier for Social Scientists, Policy Analysts, Military and other personnel to visualize an organization's propensity towards violence and radicalism. It also tracks the peaking religious, political and socio-economic markers, their target demographics and locations. A powerful search interface with parametric search helps in narrowing down to specific scenarios and view the corresponding information related to the organizations. This tool helps to identify moderate Counter-Radical organizations and also has the potential of predicting the orientation of various organizations based on the current information.
ContributorsNair, Shreejay (Author) / Davulcu, Hasan (Thesis advisor) / Dasgpta, Partha (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
153988-Thumbnail Image.png
Description
With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain

With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain webpages before getting at the webpage he/she wanted. This problem of Information Overload can be solved using Automatic Text Summarization. Summarization is a process of obtaining at abridged version of documents so that user can have a quick view to understand what exactly the document is about. Email threads from W3C are used in this system. Apart from common IR features like Term Frequency, Inverse Document Frequency, Term Rank, a variation of page rank based on graph model, which can cluster the words with respective to word ambiguity, is implemented. Term Rank also considers the possibility of co-occurrence of words with the corpus and evaluates the rank of the word accordingly. Sentences of email threads are ranked as per features and summaries are generated. System implemented the concept of pyramid evaluation in content selection. The system can be considered as a framework for Unsupervised Learning in text summarization.
ContributorsNadella, Sravan (Author) / Davulcu, Hasan (Thesis advisor) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
157416-Thumbnail Image.png
Description
There are many applications where the truth is unknown. The truth values are

guessed by different sources. The values of different properties can be obtained from

various sources. These will lead to the disagreement in sources. An important task

is to obtain the truth from these sometimes contradictory sources. In the extension

of computing

There are many applications where the truth is unknown. The truth values are

guessed by different sources. The values of different properties can be obtained from

various sources. These will lead to the disagreement in sources. An important task

is to obtain the truth from these sometimes contradictory sources. In the extension

of computing the truth, the reliability of sources needs to be computed. There are

models which compute the precision values. In those earlier models Banerjee et al.

(2005) Dong and Naumann (2009) Kasneci et al. (2011) Li et al. (2012) Marian and

Wu (2011) Zhao and Han (2012) Zhao et al. (2012), multiple properties are modeled

individually. In one of the existing works, the heterogeneous properties are modeled in

a joined way. In that work, the framework i.e. Conflict Resolution on Heterogeneous

Data (CRH) framework is based on the single objective optimization. Due to the

single objective optimization and non-convex optimization problem, only one local

optimal solution is found. As this is a non-convex optimization problem, the optimal

point depends upon the initial point. This single objective optimization problem is

converted into a multi-objective optimization problem. Due to the multi-objective

optimization problem, the Pareto optimal points are computed. In an extension of

that, the single objective optimization problem is solved with numerous initial points.

The above two approaches are used for finding the solution better than the solution

obtained in the CRH with median as the initial point for the continuous variables and

majority voting as the initial point for the categorical variables. In the experiments,

the solution, coming from the CRH, lies in the Pareto optimal points of the multiobjective

optimization and the solution coming from the CRH is the optimum solution

in these experiments.
ContributorsJain, Karan (Author) / Xue, Guoliang (Thesis advisor) / Sen, Arunabha (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019
156475-Thumbnail Image.png
Description
This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral

This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral scales based on their web site corpus. Simultaneously, a gold standard ranking of these organizations was created through domain experts and compute expert-to-expert agreements and present experimental results comparing the performance of the QUIC based scaling system to another baseline method for organizations. The QUIC based algorithm not only outperforms the baseline methods, but it is also the only system that consistently performs at area expert-level accuracies for all scales. Also, a multi-scale ideological model has been developed and it investigates the correlates of Islamic extremism in Indonesia, Nigeria and UK. This analysis demonstrate that violence does not correlate strongly with broad Muslim theological or sectarian orientations; it shows that religious diversity intolerance is the only consistent and statistically significant ideological correlate of Islamic extremism in these countries, alongside desire for political change in UK and Indonesia, and social change in Nigeria. Next, dynamic issues and communities tracking system based on NMF(Non-negative Matrix Factorization) co-clustering algorithm has been built to better understand the dynamics of virtual communities. The system used between Iran and Saudi Arabia to build and apply a multi-party agent-based model that can demonstrate the role of wedges and spoilers in a complex environment where coalitions are dynamic. Lastly, a visual intelligence platform for tracking the diffusion of online social movements has been developed called LookingGlass to track the geographical footprint, shifting positions and flows of individuals, topics and perspectives between groups. The algorithm utilize large amounts of text collected from a wide variety of organizations’ media outlets to discover their hotly debated topics, and their discriminative perspectives voiced by opposing camps organized into multiple scales. Discriminating perspectives is utilized to classify and map individual Tweeter’s message content to social movements based on the perspectives expressed in their tweets.
ContributorsKim, Nyunsu (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Hsiao, Sharon (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156735-Thumbnail Image.png
Description
The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture

The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture certain properties of the networks. With the learned node representations, machine learning and data mining algorithms can be applied for network mining tasks such as link prediction and node classification. Because of its ability to learn good node representations, network representation learning is attracting increasing attention and various network embedding algorithms are proposed.

Despite the success of these network embedding methods, the majority of them are dedicated to static plain networks, i.e., networks with fixed nodes and links only; while in social media, networks can present in various formats, such as attributed networks, signed networks, dynamic networks and heterogeneous networks. These social networks contain abundant rich information to alleviate the network sparsity problem and can help learn a better network representation; while plain network embedding approaches cannot tackle such networks. For example, signed social networks can have both positive and negative links. Recent study on signed networks shows that negative links have added value in addition to positive links for many tasks such as link prediction and node classification. However, the existence of negative links challenges the principles used for plain network embedding. Thus, it is important to study signed network embedding. Furthermore, social networks can be dynamic, where new nodes and links can be introduced anytime. Dynamic networks can reveal the concept drift of a user and require efficiently updating the representation when new links or users are introduced. However, static network embedding algorithms cannot deal with dynamic networks. Therefore, it is important and challenging to propose novel algorithms for tackling different types of social networks.

In this dissertation, we investigate network representation learning in social media. In particular, we study representative social networks, which includes attributed network, signed networks, dynamic networks and document networks. We propose novel frameworks to tackle the challenges of these networks and learn representations that not only capture the network structure but also the unique properties of these social networks.
ContributorsWang, Suhang (Author) / Liu, Huan (Thesis advisor) / Aggarwal, Charu (Committee member) / Sen, Arunabha (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
157245-Thumbnail Image.png
Description
In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph

In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment.

The objective of most of relay nodes placement problems, is to place the fewest number of relay nodes in the deployment area so that the network, formed by the sensors and the relay nodes, is connected. Under the fixed budget scenario, the expense involved in procuring the minimum number of relay nodes to make the network connected, may exceed the budget. In this dissertation, we study a family of problems whose goal is to design a network with “maximal connectedness” or “minimal disconnectedness”, subject to a fixed budget constraint. Apart from “connectivity”, we also study relay node problem in which degree constraint is considered. The balance of reducing the degree of the network while maximizing communication forms the basis of our d-degree minimum arrangement(d-MA) problem. In this dissertation, we look at several approaches to solving the generalized d-MA problem where we embed a graph onto a subgraph of a given degree.

In recent years, considerable research has been conducted on optical and FIWI networks. Utilizing a recently proposed concept “candidate trees” in optical network, this dissertation studies counting problem on complete graphs. Closed form expressions are given for certain cases and a polynomial counting algorithm for general cases is also presented. Routing plays a major role in FiWi networks. Accordingly to a novel path length metric which emphasizes on “heaviest edge”, this dissertation proposes a polynomial algorithm on single path computation. NP-completeness proof as well as approximation algorithm are presented for multi-path routing.

Radio-frequency identification (RFID) technology is extensively used at present for identification and tracking of a multitude of objects. In many configurations, simultaneous activation of two readers may cause a “reader collision” when tags are present in the intersection of the sensing ranges of both readers. This dissertation ad- dresses slotted time access for Readers and tries to provide a collision-free scheduling scheme while minimizing total reading time.

Finally, this dissertation studies a monitoring problem on the surface of the earth for significant environmental, social/political and extreme events using satellites as sensors. It is assumed that the impact of a significant event spills into neighboring regions and there will be corresponding indicators. Careful deployment of sensors, utilizing “Identifying Codes”, can ensure that even though the number of deployed sensors is fewer than the number of regions, it may be possible to uniquely identify the region where the event has taken place.
ContributorsZhou, Chenyang (Author) / Richa, Andrea (Thesis advisor) / Sen, Arunabha (Thesis advisor) / Xue, Guoliang (Committee member) / Walkowiak, Krzysztof (Committee member) / Arizona State University (Publisher)
Created2019
157077-Thumbnail Image.png
Description
Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each

Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each other, forming a more complex network model called multi-layered networks.

Among the various aspects of network studies, network connectivity plays an important role in a myriad of applications. The diversified application areas have spurred numerous connectivity measures, each designed for some specific tasks. Although effective in their own fields, none of the connectivity measures is generally applicable to all the tasks. Moreover, existing connectivity measures are predominantly based on single-layered networks, with few attempts made on multi-layered networks.

Most connectivity analyzing methods assume that the input network is static and accurate, which is not realistic in many applications. As real-world networks are evolving, their connectivity scores would vary by time as well, making it imperative to keep track of those changing parameters in a timely manner. Furthermore, as the observed links in the input network may be inaccurate due to noise and incomplete data sources, it is crucial to infer a more accurate network structure to better approximate its connectivity scores.

The ultimate goal of connectivity studies is to optimize the connectivity scores via manipulating the network structures. For most complex measures, the hardness of the optimization problem still remains unknown. Meanwhile, current optimization methods are mainly ad-hoc solutions for specific types of connectivity measures on single-layered networks. No optimization framework has ever been proposed to tackle a wider range of connectivity measures on complex networks.

In this thesis, an in-depth study of connectivity measures, inference, and optimization problems will be proposed. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity inference aspect, an effective network inference method and connectivity tracking framework will be described. Last, a generalized optimization framework will be built to address the connectivity minimization/maximization problems on both single-layered and multi-layered networks.
ContributorsChen, Chen (Author) / Tong, Hanghang (Thesis advisor) / Davulcu, Hasan (Committee member) / Sen, Arunabha (Committee member) / Subrahmanian, V.S. (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2019
153618-Thumbnail Image.png
Description
A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting problem. Researchers from a number of fields have developed algorithms

A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting problem. Researchers from a number of fields have developed algorithms to tackle this problem.

Besides the common feature above, communities within a social network have two unique characteristics: communities are mostly small and overlapping. Unfortunately, many traditional algorithms have difficulty recognizing these small communities (often called the resolution limit problem) as well as overlapping communities.

In this work, two enhanced community detection techniques are proposed for re-working existing community detection algorithms to find small communities in social networks. One method is to modify the modularity measure within the framework of the traditional Newman-Girvan algorithm so that more small communities can be detected. The second method is to incorporate a preprocessing step into existing algorithms by changing edge weights inside communities. Both methods help improve community detection performance while maintaining or improving computational efficiency.
ContributorsWang, Ran (Author) / Liu, Huan (Thesis advisor) / Sen, Arunabha (Committee member) / Colbourn, Charles (Committee member) / Arizona State University (Publisher)
Created2015
153668-Thumbnail Image.png
Description
Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in Error Correcting Code (ECC) functionality. Solutions to increase the efficiency

Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in Error Correcting Code (ECC) functionality. Solutions to increase the efficiency of ECC systems are very important to system designers and have become a heavily researched area.

Many such systems incorporate the Bose-Chaudhuri-Hocquenghem (BCH) method of error correcting in a multi-channel configuration. BCH is a commonly used code because of its configurability, low storage overhead, and low decoding requirements when compared to other codes. Multi-channel configurations are popular with system designers because they offer a straightforward way to increase bandwidth. The ECC hardware is duplicated for each channel and the throughput increases linearly with the number of channels. The combination of these two technologies provides a configurable and high throughput ECC architecture.

This research proposes a new method to optimize a BCH error correction decoder in multi-channel configurations. In this thesis, I examine how error frequency effects the utilization of BCH hardware. Rather than implement each decoder as a single pipeline of independent decoding stages, the channels are considered together and served by a pool of decoding stages. Modified hardware blocks for handling common cases are included and the pool is sized based on an acceptable, but negligible decrease in performance.
ContributorsDill, Russell (Author) / Shrivastava, Aviral (Thesis advisor) / Oh, Hyunok (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
153574-Thumbnail Image.png
Description
In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm

In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter).

The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its (Twitter) usage by news channels, financial experts and pandits, the global economy does seem to hinge on 140 characters. By analyzing the number of tweets hash tagged to a stock, a strong relation can be established between the number of people talking about it, to the trading volume of the stock.

In my work, I overt this relation and find a state of the breakout when the volume goes beyond a characterized support or resistance level.
ContributorsAwasthi, Piyush (Author) / Davulcu, Hasan (Thesis advisor) / Tong, Hanghang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015