Matching Items (52)
Filtering by

Clear all filters

187456-Thumbnail Image.png
Description
The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target

The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target distributions and (iv) belief on existing metrics as reliable indicators of performance. When any of these assumptions are violated, the models exhibit brittleness producing adversely varied behavior. This dissertation focuses on methods for accurate model design and characterization that enhance process reliability when certain assumptions are not met. With the need to safely adopt artificial intelligence tools in practice, it is vital to build reliable failure detectors that indicate regimes where the model must not be invoked. To that end, an error predictor trained with a self-calibration objective is developed to estimate loss consistent with the underlying model. The properties of the error predictor are described and their utility in supporting introspection via feature importances and counterfactual explanations is elucidated. While such an approach can signal data regime changes, it is critical to calibrate models using regimes of inlier (training) and outlier data to prevent under- and over-generalization in models i.e., incorrectly identifying inliers as outliers and vice-versa. By identifying the space for specifying inliers and outliers, an anomaly detector that can effectively flag data of varying semantic complexities in medical imaging is next developed. Uncertainty quantification in deep learning models involves identifying sources of failure and characterizing model confidence to enable actionability. A training strategy is developed that allows the accurate estimation of model uncertainties and its benefits are demonstrated for active learning and generalization gap prediction. This helps identify insufficiently sampled regimes and representation insufficiency in models. In addition, the task of deep inversion under data scarce scenarios is considered, which in practice requires a prior to control the optimization. By identifying limitations in existing work, data priors powered by generative models and deep model priors are designed for audio restoration. With relevant empirical studies on a variety of benchmarks, the need for such design strategies is demonstrated.
ContributorsNarayanaswamy, Vivek Sivaraman (Author) / Spanias, Andreas (Thesis advisor) / J. Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2023
187459-Thumbnail Image.png
Description
In the era of data explosion, massive data is generated from various sources at an unprecedented speed. The ever-growing amount of data reveals enormous opportunities for developing novel data-driven solutions to unsolved problems. In recent years, benefiting from numerous public datasets and advances in deep learning, data-driven approaches in the

In the era of data explosion, massive data is generated from various sources at an unprecedented speed. The ever-growing amount of data reveals enormous opportunities for developing novel data-driven solutions to unsolved problems. In recent years, benefiting from numerous public datasets and advances in deep learning, data-driven approaches in the computer vision domain have demonstrated superior performance with high adaptability on various data and tasks. Meanwhile, signal processing has long been dominated by techniques derived from rigorous mathematical models built upon prior knowledge of signals. Due to the lack of adaptability to real data and applications, model-based methods often suffer from performance degradation and engineering difficulties. In this dissertation, multiple signal processing problems are studied from vision-inspired data representation and learning perspectives to address the major limitation on adaptability. Corresponding data-driven solutions are proposed to achieve significantly improved performance over conventional solutions. Specifically, in the compressive sensing domain, an open-source image compressive sensing toolbox and benchmark to standardize the implementation and evaluation of reconstruction methods are first proposed. Then a plug-and-play compression ratio adapter is proposed to enable the adaptability of end-to-end data-driven reconstruction methods to variable compression ratios. Lastly, the problem of transfer learning from images to bioelectric signals is experimentally studied to demonstrate the improved performance of data-driven reconstruction. In the image subsampling domain, task-adaptive data-driven image subsampling is studied to reduce data redundancy and retain information of interest simultaneously. In the semiconductor analysis domain, the data-driven automatic error detection problem is studied in the context of integrated circuit segmentation for the first time. In the light detection and ranging(LiDAR) camera calibration domain, the calibration accuracy degradation problem in low-resolution LiDAR scenarios is addressed with data-driven techniques.
ContributorsZhang, Zhikang (Author) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
187351-Thumbnail Image.png
Description
Quantum computing holds the potential to revolutionize various industries by solving problems that classical computers cannot solve efficiently. However, building quantum computers is still in its infancy, and simulators are currently the best available option to explore the potential of quantum computing. Therefore, developing comprehensive benchmarking suites for quantum computing

Quantum computing holds the potential to revolutionize various industries by solving problems that classical computers cannot solve efficiently. However, building quantum computers is still in its infancy, and simulators are currently the best available option to explore the potential of quantum computing. Therefore, developing comprehensive benchmarking suites for quantum computing simulators is essential to evaluate their performance and guide the development of future quantum algorithms and hardware. This study presents a systematic evaluation of quantum computing simulators’ performance using a benchmarking suite. The benchmarking suite is designed to meet the industry-standard performance benchmarks established by the Defense Advanced Research Projects Agency (DARPA) and includes standardized test data and comparison metrics that encompass a wide range of applications, deep neural network models, and optimization techniques. The thesis is divided into two parts to cover basic quantum algorithms and variational quantum algorithms for practical machine-learning tasks. In the first part, the run time and memory performance of quantum computing simulators are analyzed using basic quantum algorithms. The performance is evaluated using standardized test data and comparison metrics that cover fundamental quantum algorithms, including Quantum Fourier Transform (QFT), Inverse Quantum Fourier Transform (IQFT), Quantum Adder, and Variational Quantum Eigensolver (VQE). The analysis provides valuable insights into the simulators’ strengths and weaknesses and highlights the need for further development to enhance their performance. In the second part, benchmarks are developed using variational quantum algorithms for practical machine learning tasks such as image classification, natural language processing, and recommendation. The benchmarks address several unique challenges posed by benchmarking quantum machine learning (QML), including the effect of optimizations on time-to-solution, the stochastic nature of training, the inclusion of hybrid quantum-classical layers, and the diversity of software and hardware systems. The findings offer valuable insights into the simulators’ ability to solve practical machine-learning tasks and pinpoint areas for future research and enhancement. In conclusion, this study provides a rigorous evaluation of quantum computing simulators’ performance using a benchmarking suite that meets industry-standard performance benchmarks.
ContributorsSathyakumar, Rajesh (Author) / Spanias, Andreas (Thesis advisor) / Sen, Arunabha (Thesis advisor) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2023
187693-Thumbnail Image.png
Description
Simultaneous localization and mapping (SLAM) has traditionally relied on low-level geometric or optical features. However, these features-based SLAM methods often struggle with feature-less or repetitive scenes. Additionally, low-level features may not provide sufficient information for robot navigation and manipulation, leaving robots without a complete understanding of the 3D spatial world.

Simultaneous localization and mapping (SLAM) has traditionally relied on low-level geometric or optical features. However, these features-based SLAM methods often struggle with feature-less or repetitive scenes. Additionally, low-level features may not provide sufficient information for robot navigation and manipulation, leaving robots without a complete understanding of the 3D spatial world. Advanced information is necessary to address these limitations. Fortunately, recent developments in learning-based 3D reconstruction allow robots to not only detect semantic meanings, but also recognize the 3D structure of objects from a few images. By combining this 3D structural information, SLAM can be improved from a low-level approach to a structure-aware approach. This work propose a novel approach for multi-view 3D reconstruction using recurrent transformer. This approach allows robots to accumulate information from multiple views and encode them into a compact latent space. The resulting latent representations are then decoded to produce 3D structural landmarks, which can be used to improve robot localization and mapping.
ContributorsHuang, Chi-Yao (Author) / Yang, Yezhou (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
193546-Thumbnail Image.png
Description
In the age of artificial intelligence, Machine Learning (ML) has become a pervasive force, impacting countless aspects of our lives. As ML’s influence expands, concerns about its reliability and trustworthiness have intensified, with security and robustness emerging as significant challenges. For instance, it has been demonstrated that slight perturbations to

In the age of artificial intelligence, Machine Learning (ML) has become a pervasive force, impacting countless aspects of our lives. As ML’s influence expands, concerns about its reliability and trustworthiness have intensified, with security and robustness emerging as significant challenges. For instance, it has been demonstrated that slight perturbations to a stop sign can cause ML classifiers to misidentify it as a speed limit sign, raising concerns about whether ML algorithms are suitable for real-world deployments. To tackle these issues, Responsible Machine Learning (Responsible ML) has emerged with a clear mission: to develop secure and robust ML algorithms. This dissertation aims to develop Responsible Machine Learning algorithms under real-world constraints. Specifically, recognizing the role of adversarial attacks in exposing security vulnerabilities and robustifying the ML methods, it lays down the foundation of Responsible ML by outlining a novel taxonomy of adversarial attacks within real-world settings, categorizing them into black-box target-specific, and target-agnostic attacks. Subsequently, it proposes potent adversarial attacks in each category, aiming to obtain effectiveness and efficiency. Transcending conventional boundaries, it then introduces the notion of causality into Responsible ML (a.k.a., Causal Responsible ML), presenting the causal adversarial attack. This represents the first principled framework to explain the transferability of adversarial attacks to unknown models by identifying their common source of vulnerabilities, thereby exposing the pinnacle of threat and vulnerability: conducting successful attacks on any model with no prior knowledge. Finally, acknowledging the surge of Generative AI, this dissertation explores Responsible ML for Generative AI. It introduces a novel adversarial attack that unveils their adversarial vulnerabilities and devises a strong defense mechanism to bolster the models’ robustness against potential attacks.
ContributorsMoraffah, Raha (Author) / Liu, Huan (Thesis advisor) / Yang, Yezhou (Committee member) / Xiao, Chaowei (Committee member) / Turaga, Pavan (Committee member) / Carley, Kathleen (Committee member) / Arizona State University (Publisher)
Created2024
156587-Thumbnail Image.png
Description
Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance.

Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction.

We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems.

In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.
ContributorsSong, Huan (Author) / Spanias, Andreas (Thesis advisor) / Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2018
156802-Thumbnail Image.png
Description
Human movement is a complex process influenced by physiological and psychological factors. The execution of movement is varied from person to person, and the number of possible strategies for completing a specific movement task is almost infinite. Different choices of strategies can be perceived by humans as having different degrees

Human movement is a complex process influenced by physiological and psychological factors. The execution of movement is varied from person to person, and the number of possible strategies for completing a specific movement task is almost infinite. Different choices of strategies can be perceived by humans as having different degrees of quality, and the quality can be defined with regard to aesthetic, athletic, or health-related ratings. It is useful to measure and track the quality of a person's movements, for various applications, especially with the prevalence of low-cost and portable cameras and sensors today. Furthermore, based on such measurements, feedback systems can be designed for people to practice their movements towards certain goals. In this dissertation, I introduce symmetry as a family of measures for movement quality, and utilize recent advances in computer vision and differential geometry to model and analyze different types of symmetry in human movements. Movements are modeled as trajectories on different types of manifolds, according to the representations of movements from sensor data. The benefit of such a universal framework is that it can accommodate different existing and future features that describe human movements. The theory and tools developed in this dissertation will also be useful in other scientific areas to analyze symmetry from high-dimensional signals.
ContributorsWang, Qiao (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Srivastava, Anuj (Committee member) / Sha, Xin Wei (Committee member) / Arizona State University (Publisher)
Created2018
Description
Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and

Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery constrained device needs at least three orders of magnitude reduction in power. We believe that close integration of capture and compute stages will lead to reduced overall system power.

We approach the problem by building a hardware prototype and characterize the end-to-end system bottlenecks of power and performance. The prototype has 6 IMX274 cameras and uses Nvidia Jetson TX2 development board for capture and computation. We found that capturing is bottlenecked by sensor power and data-rates across interfaces, whereas compute is limited by the total number of computations per frame. Our characterization shows that redundant capture and redundant computations lead to high power, huge memory footprint, and high latency. The existing systems lack hardware-software co-design aspects, leading to excessive data transfers across the interfaces and expensive computations within the individual subsystems. Finally, we propose mechanisms to optimize the system for low power and low latency. We emphasize the importance of co-design of different subsystems to reduce and reuse the data. For example, reusing the motion vectors of the ISP stage reduces the memory footprint of the stereo correspondence stage. Our estimates show that pipelining and parallelization on custom FPGA can achieve real time stitching.
ContributorsGunnam, Sridhar (Author) / LiKamWa, Robert (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2018
157645-Thumbnail Image.png
Description
Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of

Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of variations. While this is generally a hard problem because of the non-existence of analytical expressions to capture these variations, there are certain factors like geometric

transforms that can be expressed analytically. Furthermore, in existing frameworks, the disentangled values are also not interpretable. The focus of this work is to disentangle these geometric factors of variations (which turn out to be nuisance factors for many applications) from the semantic content of the signal in an interpretable manner which in turn makes the features more discriminative. Experiments are designed to show the modularity of the approach with other disentangling strategies as well as on multiple one-dimensional (1D) and two-dimensional (2D) datasets, clearly indicating the efficacy of the proposed approach.
ContributorsKoneripalli Seetharam, Kaushik (Author) / Turaga, Pavan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
154660-Thumbnail Image.png
Description
The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems.

Revealing the underlying structure and dynamics of complex networked systems from observed data without of any specific prior information is of fundamental importance to science, engineering, and society. We articulate a Markov network based model, the sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator based on techniques including compressive sensing and K-means algorithm. It recovers the network structure of the original system and predicts its short-term or even long-term dynamical behavior for a large variety of representative dynamical processes on model and real-world complex networks.

One of the most challenging problems in complex dynamical systems is to control complex networks.

Upon finding that the energy required to approach a target state with reasonable precision

is often unbearably large, and the energy of controlling a set of networks with similar structural properties follows a fat-tail distribution, we identify fundamental structural ``short boards'' that play a dominant role in the enormous energy and offer a theoretical interpretation for the fat-tail distribution and simple strategies to significantly reduce the energy.

Extreme events and cascading failure, a type of collective behavior in complex networked systems, often have catastrophic consequences. Utilizing transportation and evolutionary game dynamics as prototypical

settings, we investigate the emergence of extreme events in simplex complex networks, mobile ad-hoc networks and multi-layer interdependent networks. A striking resonance-like phenomenon and the emergence of global-scale cascading breakdown are discovered. We derive analytic theories to understand the mechanism of

control at a quantitative level and articulate cost-effective control schemes to significantly suppress extreme events and the cascading process.
ContributorsChen, Yuzhong (Author) / Lai, Ying-Cheng (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2016