Matching Items (169)
Filtering by

Clear all filters

150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
150359-Thumbnail Image.png
Description
S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal robustness in hybrid systems that are implemented as either m-functions or Simulink/State flow models. Trajectories with minimal robustness are found using automatic testing of hybrid systems against user specifications. In this work we use Metric Temporal Logic (MTL) to describe the user specifications for the hybrid systems. We then try to falsify the MTL specification using global minimization of robustness metric. Global minimization is carried out using stochastic optimization algorithms like Monte-Carlo (MC) and Extended Ant Colony Optimization (EACO) algorithms. Irrespective of the type of the model we provide as an input to S-Taliro, the user needs to specify the MTL specification, the initial conditions and the bounds on the inputs. S-Taliro then uses this information to generate test inputs which are used to simulate the system. The simulation trace is then provided as an input to Taliro which computes the robustness estimate of the MTL formula. Global minimization of this robustness metric is performed to generate new test inputs which again generate simulation traces which are closer to falsifying the MTL formula. Traces with negative robustness values indicate that the simulation trace falsified the MTL formula. Traces with positive robustness values are also of great importance because they indicate how robust the system is against the given specification. S-Taliro has been seamlessly integrated into the Matlab environment, which is extensively used for model-based development of control software. Moreover the toolbox has been developed in a modular fashion and therefore adding new optimization algorithms is easy and straightforward. In this work I present the architecture of S-Taliro and its working on a few benchmark problems.
ContributorsAnnapureddy, Yashwanth Singh Rahul (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Gupta, Sandeep (Committee member) / Arizona State University (Publisher)
Created2011
149803-Thumbnail Image.png
Description
With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of

With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of these policies is an extremely important task in order to avoid unintended security leakages via illegal accesses, while maintaining proper access to services for legitimate users. Managing and maintaining access control policies manually over long period of time is an error prone task due to their inherent complex nature. Existing tools and mechanisms for policy management use different approaches for different types of policies. This research thesis represents a generic framework to provide an unified approach for policy analysis and management of different types of policies. Generic approach captures the common semantics and structure of different access control policies with the notion of policy ontology. Policy ontology representation is then utilized for effectively analyzing and managing the policies. This thesis also discusses a proof-of-concept implementation of the proposed generic framework and demonstrates how efficiently this unified approach can be used for analysis and management of different types of access control policies.
ContributorsKulkarni, Ketan (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
149851-Thumbnail Image.png
Description
This research describes software based remote attestation schemes for obtaining the integrity of an executing user application and the Operating System (OS) text section of an untrusted client platform. A trusted external entity issues a challenge to the client platform. The challenge is executable code which the client must execute,

This research describes software based remote attestation schemes for obtaining the integrity of an executing user application and the Operating System (OS) text section of an untrusted client platform. A trusted external entity issues a challenge to the client platform. The challenge is executable code which the client must execute, and the code generates results which are sent to the external entity. These results provide the external entity an assurance as to whether the client application and the OS are in pristine condition. This work also presents a technique where it can be verified that the application which was attested, did not get replaced by a different application after completion of the attestation. The implementation of these three techniques was achieved entirely in software and is backward compatible with legacy machines on the Intel x86 architecture. This research also presents two approaches to incorporating software based "root of trust" using Virtual Machine Monitors (VMMs). The first approach determines the integrity of an executing Guest OS from the Host OS using Linux Kernel-based Virtual Machine (KVM) and qemu emulation software. The second approach implements a small VMM called MIvmm that can be utilized as a trusted codebase to build security applications such as those implemented in this research. MIvmm was conceptualized and implemented without using any existing codebase; its minimal size allows it to be trustworthy. Both the VMM approaches leverage processor support for virtualization in the Intel x86 architecture.
ContributorsSrinivasan, Raghunathan (Author) / Dasgupta, Partha (Thesis advisor) / Colbourn, Charles (Committee member) / Shrivastava, Aviral (Committee member) / Huang, Dijiang (Committee member) / Dewan, Prashant (Committee member) / Arizona State University (Publisher)
Created2011
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150062-Thumbnail Image.png
Description
TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all

TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all be set on a scenario-by-scenario basis. The taxis must attempt to service the fares as quickly as possible, by picking each one up and carrying it to its drop-off location. The TaxiWorld scenario is formally modeled using both Decentralized Partially-Observable Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision Processes (MMDPs). The purpose of developing formal models is to learn how to build and use formal Markov models, such as can be given to planners to solve for optimal policies in problem domains. However, finding optimal solutions for Dec-POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an improvement to the method already in use on the simulator, and the methods were compared in identical scenarios to determine which is more effective. The empirical method is of course not optimal - rather, it attempts to simply account for some of the most important factors to achieve an acceptable level of effectiveness while still retaining a reasonable level of computational complexity for online solving.
ContributorsWhite, Christopher (Author) / Kambhampati, Subbarao (Thesis advisor) / Gupta, Sandeep (Committee member) / Varsamopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2011
150148-Thumbnail Image.png
Description
In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and

In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and techniques that are currently available because they do not fully adhere to the dictated procedures for the handling, analysis, and disclosure of items relating to cases. The aim of this work is to conceive and design a framework that provides a completely new architecture that 1) can perform fundamental functions that are common and necessary to forensic analyses, and 2) is structured such that it is possible to include collaboration-facilitating components without changing the way users interact with the system sans collaboration. This framework is called the Collaborative Forensic Framework (CUFF). CUFF is constructed from four main components: Cuff Link, Storage, Web Interface, and Analysis Block. With the Cuff Link acting as a mediator between components, CUFF is flexible in both the method of deployment and the technologies used in implementation. The details of a realization of CUFF are given, which uses a combination of Java, the Google Web Toolkit, Django with Apache for a RESTful web service, and an Ubuntu Enterprise Cloud using Eucalyptus. The functionality of CUFF's components is demonstrated by the integration of an acquisition script designed for Android OS-based mobile devices that use the YAFFS2 file system. While this work has obvious application to examination labs which work under the mandate of judicial or investigative bodies, security officers at any organization would benefit from the improved ability to cooperate in electronic discovery efforts and internal investigations.
ContributorsMabey, Michael Kent (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
152302-Thumbnail Image.png
Description
The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to achieve greening of the data centers. This thesis deals with cooling energy management in data centers running data-processing frameworks. In particular, we propose ther- mal aware scheduling for MapReduce framework and its Hadoop implementation to reduce cooling energy in data centers. Data-processing frameworks run many low- priority batch processing jobs, such as background log analysis, that do not have strict completion time requirements; they can be delayed by a bounded amount of time. Cooling energy savings are possible by being able to temporally spread the workload, and assign it to the computing equipments which reduce the heat recirculation in data center room and therefore the load on the cooling systems. We implement our scheme in Hadoop and performs some experiments using both CPU-intensive and I/O-intensive workload benchmarks in order to evaluate the efficiency of our scheme. The evaluation results highlight that our thermal aware scheduling reduces hot-spots and makes uniform temperature distribution within the data center possible. Sum- marizing the contribution, we incorporated thermal awareness in Hadoop MapReduce framework by enhancing the native scheduler to make it thermally aware, compare the Thermal Aware Scheduler(TAS) with the Hadoop scheduler (FCFS) by running PageRank and TeraSort benchmarks in the BlueTool data center of Impact lab and show that there is reduction in peak temperature and decrease in cooling power using TAS over FCFS scheduler.
ContributorsKole, Sayan (Author) / Gupta, Sandeep (Thesis advisor) / Huang, Dijiang (Committee member) / Varsamopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2013
152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
151519-Thumbnail Image.png
Description
Majority of the Sensor networks consist of low-cost autonomously powered devices, and are used to collect data in physical world. Today's sensor network deployments are mostly application specific & owned by a particular entity. Because of this application specific nature & the ownership boundaries, this modus operandi hinders large scale

Majority of the Sensor networks consist of low-cost autonomously powered devices, and are used to collect data in physical world. Today's sensor network deployments are mostly application specific & owned by a particular entity. Because of this application specific nature & the ownership boundaries, this modus operandi hinders large scale sensing & overall network operational capacity. The main goal of this research work is to create a mechanism to dynamically form personal area networks based on mote class devices spanning ownership boundaries. When coupled with an overlay based control system, this architecture can be conveniently used by a remote client to dynamically create sensor networks (personal area network based) even when the client does not own a network. The nodes here are "borrowed" from existing host networks & the application related to the newly formed network will co-exist with the native applications thanks to concurrency. The result allows users to embed a single collection tree onto spatially distant networks as if they were within communication range. This implementation consists of core operating system & various other external components that support injection maintenance & dissolution sensor network applications at client's request. A large object data dissemination protocol was designed for reliable application injection. The ability of this system to remotely reconfigure a network is useful given the high failure rate of real-world sensor network deployments. Collaborative sensing, various physical phenomenon monitoring also be considered as applications of this architecture.
ContributorsFernando, M. S. R (Author) / Dasgupta, Partha (Thesis advisor) / Bhattacharya, Amiya (Thesis advisor) / Gupta, Sandeep (Committee member) / Arizona State University (Publisher)
Created2013