Matching Items (3)
Filtering by

Clear all filters

132922-Thumbnail Image.png
Description
Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the

Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the City of Charleston. However, these solutions are years away at minimum and faced with development issues. This thesis attempts to treat some of the symptoms of flooding, such as navigation, by creating an iPhone application which predicts flooding and helps people navigate around it safely. Specifically, this thesis will take into account rainfall and tide levels to display to users actively flooded areas of downtown Charleston and provide routing to a destination from a user’s location around these flooded areas whenever possible.
ContributorsSalisbury, Mason (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147667-Thumbnail Image.png
Description

My proposed project is an educational application that will seek to simplify the<br/>process of internalizing the chord symbols most commonly seen by those learning<br/>musical improvisation. The application will operate like a game, encouraging the<br/>user to identify chord tones within time limits and award points for successfully<br/>doing so.

ContributorsOwens, Kevin Bradyn (Author) / Balasooriya, Janaka (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131233-Thumbnail Image.png
Description
Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library,

Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library, he/she would have to hand pick songs that fit the mold and create a new playlist. This is a time consuming process that may not produce the most efficient result due to human error. The objective of this project, therefore, was to develop an application to streamline this process, optimize efficiency, and fill this user need.

Song Sift is an application built using Angular that allows users to filter and sort their song library to create specific playlists using the Spotify Web API. Utilizing the audio feature data that Spotify attaches to every song in their library, users can filter their downloaded Spotify songs based on four main attributes: (1) energy (how energetic a song sounds), (2) danceability (how danceable a song is), (3) valence (how happy a song sounds), and (4) loudness (average volume of a song). Once the user has created a playlist that fits their desired genre, he/she can easily export it to their Spotify account with the click of a button.
ContributorsDiMuro, Louis (Author) / Balasooriya, Janaka (Thesis director) / Chen, Yinong (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05