Matching Items (14)
Filtering by

Clear all filters

152707-Thumbnail Image.png
Description
As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.
ContributorsPagano, Michael (Author) / Young, Patrick (Thesis advisor) / Shim, Sang-Heon (Committee member) / Patience, Jennifer (Committee member) / Desch, Steven (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
150742-Thumbnail Image.png
Description
The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas

The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas later collapses into new stars, which are able to form heavier elements due to the presence of the new elements. When we observe the abundances in a stellar regions, we are able to glean the astrophysical phenomena that occurred prior to its formation. I compile spectroscopic abundance data from 49 literature sources for 46 elements across 2836 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. I analyze the variability of the spread in abundance measurements reported for the same star by different surveys, the corresponding stellar atmosphere parameters adopted by various abundance determination methods, and the effect of normalizing all abundances to the same solar scale. The resulting abundance ratios [X/Fe] as a function of [Fe/H] are consistent with stellar nucleosynthetic processes and known Galactic thin-disk trends. I analyze the element abundances for 204 known exoplanet host-stars. In general, I find that exoplanet host-stars are not enriched more than the surrounding population of stars, with the exception of iron. I examine the stellar abundances with respect to both stellar and planetary physical properties, such as orbital period, eccentricity, planetary mass, stellar mass, and stellar color. My data confirms that exoplanet hosts are enriched in [Fe/H] but not in the refractory elements, per the self-enrichment theory for stellar composition. Lastly, I apply the Hypatia Catalog to the Catalog of Potentially Habitable Stellar Systems in order to investigate the abundances in the 1224 overlapping stars. By looking at stars similar to the Sun with respect to six bio-essential elements, I created maps that have located two ``habitability windows'' on the sky: (20.6hr, -4.8deg) and (22.6hr, -48.5deg). These windows may be of use in future targeted or beamed searches.
ContributorsHinkel, Natalie R (Author) / Timmes, Frank X (Thesis advisor) / Anbar, Ariel (Committee member) / Patience, Jennifer (Committee member) / Shumway, John (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
156980-Thumbnail Image.png
Description
The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I

The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I show that variable $\alpha$(r,z) (where $r$ is radius, and $z$ is height from the midplane) attributable to angular momentum transport due to MRI can yield disks with significantly different structure, as mass piles up in the 1-10 AU region resulting in steep slopes of p $>$ 2 here (where p is the power law exponent in $\Sigma \propto r^{-p}$). I also show that the transition radius (where bulk mass flow switches from inward to outward) can move as close in as 3 AU; this effect (especially prominent in externally photoevaporated disks) may significantly influence the radial water content available during planet formation.

I then investigate the transport of water in disks with different variable α profiles. While radial temperature profile sets the location of the water snowline (i.e., inside of which water is present as vapor; outside of which, as ice on solids), it is the rates of diffusion and drift of small icy solids and diffusion of vapor across the snow line that determine the radial water distribution. All of these processes are highly sensitive to local $\alpha$. I calculate the effect of radially varying α on water transport, by tracking the abundance of vapor in the inner disk, and fraction of ice in particles and larger asteroids beyond the snow line. I find one α profile attributable to winds and hydrodynamical instabilities, and motivated by meteoritic constraints, to show considerable agreement with inferred water contents observed in solar system asteroids.

Finally, I calculate the timing of gap formation due to the formation of a planet in disks around different stars. Here, I assume that pebble accretion is the dominant mechanism for planetary growth and that the core of the first protoplanet forms at the water snow line. I discuss the dependence of gap timing to various stellar and disk properties.
ContributorsKalyaan, Anusha (Author) / Desch, Steven J (Thesis advisor) / Groppi, Christopher (Committee member) / Young, Patrick (Committee member) / Shkolnik, Evgenya (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2018
Description
How do we visualize environments outside our solar system? I have researched two very alien planets and their compositions with the goal of finding out how those differences would affect the way a planet appears on its surface. The first is a planet orbiting the nearby G type star Tau

How do we visualize environments outside our solar system? I have researched two very alien planets and their compositions with the goal of finding out how those differences would affect the way a planet appears on its surface. The first is a planet orbiting the nearby G type star Tau Ceti. This star has Mg/Si ratio of 1.78, compared to 1.2 found on the Earth. A planet formed around this star could have a very active surface, covered in volcanoes. The other planet is a hypothetical carbon planet that could orbit the star HD 144899. This star has a C/O ratio of 0.8, compared to 0.5 in the Sun. A planet formed here might be comprised mostly of carbides, with a hydrocarbon atmosphere. It would likely be geologically dead, the main forces shaping its surface being meteorites. Both planets, due to their extremes, would likely be barren and lifeless. The results of this project are two digital paintings showcasing my vision of these planets.
ContributorsGonzales, Joshua Michael (Author) / Young, Patrick (Thesis director) / Patience, Jennifer (Committee member) / Button, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Art (Contributor)
Created2015-05
Description
The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For

The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity.

For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. By analyzing archival HST data and examining the near-infrared colors of HD 106906b, we conclude that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, I measure the properties of the low mass directly imaged planet 51 Eridani b. We combined published J, H spectra with updated LP photometry, new K1, K2 spectra, and MS photometry. The new data confirms that the planet has redder than similar spectral type objects, which might be due to the planet still transitioning from to L-to-T. Model atmospheres indicate a cooler effective temperature best fit by a patchy cloud atmosphere making 51 Eri b an excellent candidate for future variability studies with the James Webb Space Telescope.
ContributorsRajan, Abhijith (Author) / Patience, Jennifer (Thesis advisor) / Young, Patrick (Thesis advisor) / Scowen, Paul (Committee member) / Butler, Nathaniel (Committee member) / Shkolnik, Evgenya (Committee member) / Arizona State University (Publisher)
Created2017
Description
The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the

The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the companion properties and environments of low-mass systems: (1) The 245-star M-dwarfs in Multiples (MinMs) Survey, a volume-limited survey of field M-dwarf companions within 15 pc, (2) the Taurus Boundary of Stellar/Substellar (TBOSS) Survey, an ongoing study of disk properties for low-mass members within the Taurus star-forming region, and (3) spectroscopy of a brown dwarf companion using the Gemini Planet Imager (GPI).

Direct imaging of M-dwarfs is a sensitive technique to identify low-mass companions over a wide range of orbital separation, and the high proper motion of nearby M-dwarfs eases confirmation of new multiple stars. Combining AO and wide-field imaging, the MinMs Survey provides new measurements of the companion star fraction (CSF), separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs. These results demonstrate the closer orbital separations (~6 AU) and lower frequency (~23% CSF) of M-dwarf binaries relative to higher-mass stars.

From the TBOSS project, I report 885µm Atacama Large Millimeter/sub-millimeter Array continuum measurements for 24 Taurus members spanning the stellar/substellar boundary (M4-M7.75). Observations of submillimeter emission from dust grains around the lowest-mass hosts show decreasing disk dust mass for decreasing host star mass, consistent with low frequencies of giant planets around M-dwarfs. Compared to the older stellar association of Upper Scorpius, Taurus disks have a factor of four higher mass in submillimeter-sized grains.

From the GPI Exoplanet Survey, I describe near-infrared spectroscopy of an unusually red companion orbiting inside the debris disk of an F5V star. As the second brown dwarf discovered within the innermost region of a debris disk, the properties of this system offer important dynamical constraints for companion-disk interaction and a useful benchmark for brown dwarf and giant planet atmospheric study.
ContributorsWard-Duong, Kimberly Dolan (Author) / Patience, Jennifer (Thesis advisor) / Young, Patrick (Committee member) / Butler, Nathaniel (Committee member) / Bowman, Judd (Committee member) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2017
155723-Thumbnail Image.png
Description
High-energy explosive phenomena, Gamma-Ray Bursts (GRBs) and Supernovae (SNe), provide unique laboratories to study extreme physics and potentially open up the new discovery window of Gravitational-wave astronomy.

Uncovering the intrinsic variability of GRBs constrains the size of the GRB emission region, and ejecta velocity, in turn provides hints on the

High-energy explosive phenomena, Gamma-Ray Bursts (GRBs) and Supernovae (SNe), provide unique laboratories to study extreme physics and potentially open up the new discovery window of Gravitational-wave astronomy.

Uncovering the intrinsic variability of GRBs constrains the size of the GRB emission region, and ejecta velocity, in turn provides hints on the nature of GRBs and their progenitors. We develop a novel method which ties together wavelet and structure-function analyses to measure, for the first time, the actual minimum variability timescale, Delta t_min, of GRB light curves. Implementing our technique to the largest sample of GRBs collected by Swift and Fermi instruments reveals that only less than 10% of GRBs exhibit evidence for variability on timescales below 2 ms. Investigation on various energy bands of the Gamma-ray Burst Monitor (GBM) onboard Fermi shows that the tightest constraints on progenitor radii derive from timescales obtained from the hardest energy channel of light curves (299--1000 keV). Our derivations for the minimum Lorentz factor, Gamma_min, and the minimum emission radius, R = 2c Gamma_min^2 Delta t_min / (1+z), find Gamma < 400 which imply typical emission radii R ~ 1 X 10^14 cm for long-duration GRBs and R ~ 3 X 10^13 cm for short-duration GRBs (sGRBs).

I present the Reionization and Transients InfraRed (RATIR) followup of LIGO/Virgo Gravitational-wave events especially for the G194575 trigger. I show that expanding our pipeline to search for either optical riZ or near-infrared YJH detections (3 or more bands)

should result in a false-alarm-rate ~1% (one candidate in the vast 100 deg^2 LIGO error region) and an efficiency ~90%.

I also present the results of a 5-year comprehensive SN search by the Palomar Transient Factory aimed to measure the SN rates in the local Luminous Infrared Galaxies. We find that the SN rate of the sample, 0.05 +/- 0.02 1/yr (per galaxy), is consistent with that expected from the theoretical prediction, 0.060 +/- 0.002 1/yr (per galaxy).
ContributorsGolkhou, Vahid Zachary (Author) / Butler, Nathaniel R. (Thesis advisor) / Bowman, Judd (Committee member) / Jansen, Rolf A (Committee member) / Patience, Jennifer (Committee member) / Scannapieco, Evan (Committee member) / Arizona State University (Publisher)
Created2017
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148011-Thumbnail Image.png
Description

Debris disks are a collection of dust grains and planetesimals around a star and are thought to contain the remnants of planet formation. Directly imaging debris disks and studying their morphologies is valuable for studying the planet formation process. In some stellar systems that have a directly imaged debris disk,

Debris disks are a collection of dust grains and planetesimals around a star and are thought to contain the remnants of planet formation. Directly imaging debris disks and studying their morphologies is valuable for studying the planet formation process. In some stellar systems that have a directly imaged debris disk, there are also directly imaged planets. Debris disk structures like gaps and asymmetries can show the gravitational e↵ects of planets that are below the brightness threshold for being detected via direct imaging. We investigate a sample of debris disks in Scorpius-Centaurus (Sco-Cen) that were imaged with the Gemini Planet Imager (GPI), which is an adaptive optics system with a coronagraph to block starlight. We look at two GPI data sets, the GPIES campaign Sco-Cen targets, and a follow-up observing program for Sco-Cen targets. We resolve 5 debris disks in the follow-up program and 13 from the GPIES campaign. By calculating contrast curves, we determine the planet detection limit in each of the GPI images. We find that we could have detected 5 Jupiter mass planets at angular separations greater than about 0.6 arcseconds in our GPIES campaign images. In three of our images we could have detected 2 Jupiter mass planets in wide orbits, but 2 Jupiter masses below the detection limit in our other images. We identify one point source around HD 108904 as a sub-stellar companion candidate. To further check for evidence of planets that are below the detection limit, we measure the surface brightness profile of the disks to check for asymmetries in brightness. We find that one of the edge-on disks has an asymmetric surface brightness profile, HD 106906, and three other edge-on disks have symmetric surface brightness profiles. We also find that two disks, HD 106906 and HD 111520, are asymmetric in radial extent, which is possibly evidence for gravitational interactions with planets.

ContributorsWorthen, Kadin Douglas (Author) / Patience, Jennifer (Thesis director) / Hom, Justin (Committee member) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
172012-Thumbnail Image.png
Description
Standard cosmological models predict that the first astrophysical sources formed from a Universe filled with neutral hydrogen (HI) around one hundred million years after the Big Bang. The transition into Cosmic Dawn (CD) that seeded all the structures seen today can only be probed directly by the 21-cm line of

Standard cosmological models predict that the first astrophysical sources formed from a Universe filled with neutral hydrogen (HI) around one hundred million years after the Big Bang. The transition into Cosmic Dawn (CD) that seeded all the structures seen today can only be probed directly by the 21-cm line of neutral hydrogen. Redshifted by the Hubble expansion, HI signal during CD is expected to be visible in radio frequencies. Precisely characterized and carefully calibrated low-frequency instruments are necessary to measure the predicted ~10-200 mK brightness temperature of this cosmological signal against foregrounds. This dissertation focuses on improving the existing instrumental and analysis techniques for the Experiment to Detect the Global EoR Signature (EDGES) and building capabilities for future space-based 21-cm instruments, including the Farside Array for Radio Science Investigations of the Dark ages and Exoplanets (FARSIDE) concept.Frequency-dependent antenna beams of 21-cm instruments limit the removal of bright galactic foreground emission (~10^3 - 10^4K) from observations. Using three electromagnetic simulation packages, I modeled the EDGES low-band antenna, including the ground plane and soil, and quantified its variations as a function of frequency. I compared simulated observations to sky data and obtained absolute agreement within 4% and qualitatively similar spectral structures. I used the new open-source edges-analysis pipeline to carry out rigorous fits of the absorption feature on the same low-band data and lab calibration measurements as (Bowman et. al. 2018). Using a Bayesian framework, I tested a few calibration choices and found posteriors of the best-fit 21-cm model parameters well within the 1σ values reported in B18. To test for the ``global'' nature of the reported cosmic absorption feature, I performed a time-dependent analysis. Initial results from this analysis successfully retrieved physical estimates for the foregrounds and estimates of the cosmic signal consistent with previous findings. The array layout of FARSIDE, a NASA probe-class concept to place a radio interferometer on the lunar farside, is a four-arm spiral configuration consisting of 128 dual-polarized antennas with a spatial offset between the phase centers of its orthogonal polarizations. I modeled the impact of direction-dependent beams and phase offsets on simulated observations of all four Stokes parameter images of a model and quantified its effects on the two primary science cases: 21-cm cosmology and exoplanet studies.
ContributorsMahesh, Nivedita (Author) / Bowman, Judd D (Thesis advisor) / Jacobs, Daniel C (Committee member) / Groppi, Christopher (Committee member) / Shkolnik, Evgenya (Committee member) / Windhorst, Rogier (Committee member) / Arizona State University (Publisher)
Created2022