Matching Items (3)
Filtering by

Clear all filters

156004-Thumbnail Image.png
Description
Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.
ContributorsMitchell, Julie (Author) / Christensen, Philip R. (Thesis advisor) / Bell Iii, James F (Committee member) / Desch, Steven J (Committee member) / Hartnett, Hilairy E (Committee member) / Robinson, Mark S (Committee member) / Arizona State University (Publisher)
Created2017
148337-Thumbnail Image.png
Description

When rover mission planners are laying out the path for their rover, they use a combination of stereo images and statistical and geological data in order to plot a course for the vehicle to follow for its mission. However, there is a lack of detailed images of the lunar surface

When rover mission planners are laying out the path for their rover, they use a combination of stereo images and statistical and geological data in order to plot a course for the vehicle to follow for its mission. However, there is a lack of detailed images of the lunar surface that indicate the specific presence of hazards, such as craters, and the creation of such crater maps is time-consuming. There is also little known about how varying lighting conditions caused by the changing solar incidence angle affects perception as well. This paper addresses this issue by investigating how varying the incidence angle of the sun affects how well the human and AI can detect craters. It will also see how AI can accelerate the crater-mapping process, and how well it performs relative to a human annotating crater maps by hand. To accomplish this, several sets of images of the lunar surface were taken with varying incidence angles for the same spot and were annotated both by hand and by an AI. The results are observed, and then the AI performance was rated by calculating its resulting precision and recall, considering the human annotations as being the ground truth. It was found that there seems to be a maximum incidence angle for which detect rates are the highest, and that, at the moment, the AI’s detection of craters is poor, but it can be improved. With this, it can inform future and more expansive investigations into how lighting can affect the perception of hazards to rovers, as well as the role AI can play in creating these crater maps.

ContributorsHayashi, Brent Keopele (Author) / Das, Jnaneshwar (Thesis director) / Mahanti, Prasun (Committee member) / Anand, Harish (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152354-Thumbnail Image.png
Description
Impact craters are ubiquitous throughout the Solar System, formed by one of the principal processes responsible for surface modification of terrestrial planets and solid bodies (i.e., asteroids, icy moons). The impact cratering process is well studied, particularly on the Moon and Mercury, where the results remain uncomplicated by atmospheric effects,

Impact craters are ubiquitous throughout the Solar System, formed by one of the principal processes responsible for surface modification of terrestrial planets and solid bodies (i.e., asteroids, icy moons). The impact cratering process is well studied, particularly on the Moon and Mercury, where the results remain uncomplicated by atmospheric effects, plate tectonics, or interactions with water and ices. Crater measurements, used to determine relative and absolute ages for geologic units by relating the cumulative crater frequency per unit area to radiometrically-determined ages from returned samples, are sensitive to the solar incidence angle of images used for counts. Earlier work is quantitatively improved by investigating this important effect and showing that absolute model ages are most accurately determined using images with incidence angles between 65° and 80°, and equilibrium crater diameter estimates are most accurate at ~80° incidence angle. A statistical method is developed using crater size-frequencies to distinguish lunar mare age units in the absence of spectral differences. Applied to the Moon, the resulting areal crater densities confidently identify expansive units with >300–500 my age differences, distinguish non-obvious secondaries, and determine that an area >1×104 km2 provides statistically robust crater measurements. This areal crater density method is also applied to the spectrally-homogeneous volcanic northern smooth plains (NSP) on Mercury. Although crater counts and observations of embayed craters indicate that the NSP experienced at least two resurfacing episodes, no observable age units are observed using areal crater density measurements, so smooth plains emplacement occurred over a relatively short timescale (<500 my). For the first time, the distribution of impact melt on Mercury and the Moon are compared at high resolution. Mercurian craters with diameters ≥30 km have a greater areal extent of interior melt deposits than similarly sized lunar craters, a result consistent with melt-generation model predictions. The effects of shaking on compositional sorting within a granular regolith are experimentally tested, demonstrating the possibility of mechanical segregation of particles in the lunar regolith. These results provide at least one explanation toward understanding the inconsistencies between lunar remote sensing datasets and are important for future spacecraft sample return missions.
ContributorsOstrach, Lillian Rose (Author) / Robinson, Mark S (Thesis advisor) / Bell Iii, James F (Committee member) / Christensen, Philip R. (Committee member) / Clarke, Amanda B (Committee member) / Garnero, Edward J (Committee member) / Arizona State University (Publisher)
Created2013