Matching Items (3)
Filtering by

Clear all filters

171959-Thumbnail Image.png
Description
Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems

Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems has also spurred a lot of interest in ensuring that AI systems can efficiently and effectively work and collaborate with their intended users. Chief among the efforts in this direction has been the pursuit of imbuing these agents with the ability to provide intuitive and useful explanations regarding their decisions and actions to end-users. In this dissertation, I will describe various works that I have done in the area of explaining sequential decision-making problems. Furthermore, I will frame the discussions of my work within a broader framework for understanding and analyzing explainable AI (XAI). My works herein tackle many of the core challenges related to explaining automated decisions to users including (1) techniques to address asymmetry in knowledge between the user and the system, (2) techniques to address asymmetry in inferential capabilities, and (3) techniques to address vocabulary mismatch.The dissertation will also describe the works I have done in generating interpretable behavior and policy summarization. I will conclude this dissertation, by using the framework of human-aware explanation as a lens to analyze and understand the current landscape of explainable planning.
ContributorsSreedharan, Sarath (Author) / Kambhampati, Subbarao (Thesis advisor) / Kim, Been (Committee member) / Smith, David E (Committee member) / Srivastava, Siddharth (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2022
193613-Thumbnail Image.png
Description
In today's world, robotic technology has become increasingly prevalent across various fields such as manufacturing, warehouses, delivery, and household applications. Planning is crucial for robots to solve various tasks in such difficult domains. However, most robots rely heavily on humans for world models that enable planning. Consequently, it is not

In today's world, robotic technology has become increasingly prevalent across various fields such as manufacturing, warehouses, delivery, and household applications. Planning is crucial for robots to solve various tasks in such difficult domains. However, most robots rely heavily on humans for world models that enable planning. Consequently, it is not only expensive to create such world models, as it requires human experts who understand the domain as well as robot limitations, these models may also be biased by human embodiment, which can be limiting for robots whose kinematics are not human-like. This thesis answers the fundamental question: Can we learn such world models automatically? This research shows that we can learn complex world models directly from unannotated and unlabeled demonstrations containing only the configurations of the robot and the objects in the environment. The core contributions of this thesis are the first known approaches for i) task and motion planning that explicitly handle stochasticity, ii) automatically inventing neuro-symbolic state and action abstractions for deterministic and stochastic motion planning, and iii) automatically inventing relational and interpretable world models in the form of symbolic predicates and actions. This thesis also presents a thorough and rigorous empirical experimentation. With experiments in both simulated and real-world settings, this thesis has demonstrated the efficacy and robustness of automatically learned world models in overcoming challenges, generalizing beyond situations encountered during training.
ContributorsShah, Naman (Author) / Srivastava, Siddharth (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Konidaris, George (Committee member) / Speranzon, Alberto (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2024
157202-Thumbnail Image.png
Description
In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on an extensive suite of challenging navigation planning problems. This work shows that critical areas of an environment are learnable, and can be used by Learn and Link to solve MP problems with far less planning time than existing sampling-based planners.
ContributorsMolina, Daniel, M.S (Author) / Srivastava, Siddharth (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019