Matching Items (3)
Filtering by

Clear all filters

151040-Thumbnail Image.png
Description
This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of game

This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of game performance. Three versions of an instructional game, Shipping Express, were designed for the purposes of this study. The endogenous version of Shipping Express integrated the associative and distributive properties of multiplication within the mechanics, while the exogenous version had the instructional content separate from game play. A total of 111 fourth and fifth graders were randomly assigned to one of three conditions (endogenous, exogenous, and control) and completed pre and posttest measures of conceptual understanding of the associative and distributive properties of multiplication, along with a questionnaire. The results revealed several significant results: 1) there was a significant difference between participants' change in scores on the measure of conceptual understanding of the associative property of multiplication, based on the version of Shipping Express they played. Participants who played the endogenous version of Shipping Express had on average higher gains in scores on the measure of conceptual understanding of the associative property of multiplication than those who played the other versions of Shipping Express; 2) performance on the measures of conceptual understanding of the distributive property collected prior to game play were related to performance within the endogenous game environment; and 3) participants who played the control version of Shipping Express were on average more likely to have a negative attitude towards continuing game play on their own compared to the other versions of the game. No significant differences were found in regards to changes in scores on the measure of conceptual understanding of the distributive property based on the version of Shipping Express played, post hoc pairwise comparisons, and changes on scores on question types within the conceptual understanding of the associative and distributive property of multiplication measures. The findings from this study provide some support for a move towards the design and development of endogenous instructional games. Additional implications for the learning through digital game play and future research directions are discussed.
ContributorsDenham, Andrew (Author) / Nelson, Brian C. (Thesis advisor) / Atkinson, Robert K. (Committee member) / Middleton, James (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2012
156684-Thumbnail Image.png
Description
The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’

The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’ Categorization Practice Utility (MS-CPU), an example-tracing intelligent tutoring system that serves as practice for the first step (problem categorization) in a larger comprehensive story problem-solving pedagogy that purports to raise the level of story problem-solving performance. During the analysis phase of this project, knowledge components and particular competencies that enable learning (schema building) were identified. During the development phase, a tutoring system was designed and implemented that algorithmically teaches these competencies to the student with graphical, interactive, and animated utilities. Because the tutoring system provides a much more concrete rather than conceptual, learning environment, it should foster a much greater apprehension of a story problem-solving process. With this experience, the student should begin to recognize the generalizability of concrete operations that accomplish particular story problem-solving goals and begin to build conceptual knowledge and a more conceptual approach to the task. During the formative evaluation phase, qualitative methods were used to identify obstacles in the MS-CPU user interface and disconnections in the pedagogy that impede learning story problem categorization and solution preparation. The study was conducted over two iterations where identification of obstacles and change plans (mitigations) produced a qualitative data table used to modify the first version systems (MS-CPU 1.1). Mitigation corrections produced the second version of the MS-CPU 1.2, and the next iteration of the study was conducted producing a second set of obstacle/mitigation tables. Pre-posttests were conducted in each iteration to provide corroboration for the effectiveness of the mitigations that were performed. The study resulted in the identification of a number of learning obstacles in the first version of the MS-CPU 1.1. Their mitigation produced a second version of the MS-CPU 1.2 whose identified obstacles were much less than the first version. It was determined that an additional iteration is needed before more quantitative research is conducted.
ContributorsRitchey, ChristiAnne (Author) / VanLehn, Kurt (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Hong, Yi-Chun (Committee member) / Arizona State University (Publisher)
Created2018
156611-Thumbnail Image.png
Description
Handwritten documents have gained popularity in various domains including education and business. A key task in analyzing a complex document is to distinguish between various content types such as text, math, graphics, tables and so on. For example, one such aspect could be a region on the document with a

Handwritten documents have gained popularity in various domains including education and business. A key task in analyzing a complex document is to distinguish between various content types such as text, math, graphics, tables and so on. For example, one such aspect could be a region on the document with a mathematical expression; in this case, the label would be math. This differentiation facilitates the performance of specific recognition tasks depending on the content type. We hypothesize that the recognition accuracy of the subsequent tasks such as textual, math, and shape recognition will increase, further leading to a better analysis of the document.

Content detection on handwritten documents assigns a particular class to a homogeneous portion of the document. To complete this task, a set of handwritten solutions was digitally collected from middle school students located in two different geographical regions in 2017 and 2018. This research discusses the methods to collect, pre-process and detect content type in the collected handwritten documents. A total of 4049 documents were extracted in the form of image, and json format; and were labelled using an object labelling software with tags being text, math, diagram, cross out, table, graph, tick mark, arrow, and doodle. The labelled images were fed to the Tensorflow’s object detection API to learn a neural network model. We show our results from two neural networks models, Faster Region-based Convolutional Neural Network (Faster R-CNN) and Single Shot detection model (SSD).
ContributorsFaizaan, Shaik Mohammed (Author) / VanLehn, Kurt (Thesis advisor) / Cheema, Salman Shaukat (Thesis advisor) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018