Matching Items (3)
Filtering by

Clear all filters

135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017
Description

This thesis will bring together students to engage in entrepreneurship by finding, measuring and sharing strategic market opportunities. From a student’s perspective, it will take a deep dive into the world of startup ecosystems, markets and trends utilizing both qualitative and quantitative market research techniques. The information gathered has been

This thesis will bring together students to engage in entrepreneurship by finding, measuring and sharing strategic market opportunities. From a student’s perspective, it will take a deep dive into the world of startup ecosystems, markets and trends utilizing both qualitative and quantitative market research techniques. The information gathered has been curated into a productive, meaningful manner, through a report titled “The State of Startups: A Student Perspective.” <br/>The first key theme of this thesis is that market intelligence can be a powerful tool. The second key theme is the power of knowledge implementation towards competitive strategies. The first section of the thesis will focus on identifying and understanding the current “startup” landscape as a basis on which to build strategic and impactful business decisions. This will be accomplished as the team conducts a landscape analysis focused on the student perspective of the student-based North American “entrepreneurial” ecosystem. The second section of the thesis will focus specifically on the personal experiences of student startup founders. This will be accomplished through the analysis of interviews with founders of the startups researched from the first section of the thesis. This will provide us with a direct insight into the student perspective of the student-based North American “entrepreneurial” ecosystem.

ContributorsRudick, Justin Harris (Co-author) / Callahan, Ryan (Co-author) / Minic, Jacob (Co-author) / Hybert, Jacob (Co-author) / Forshey, Cecilia (Co-author) / Byrne, Jared (Thesis director) / Olsen, Douglas (Committee member) / Curtiss, Ian (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05