Matching Items (10)
Filtering by

Clear all filters

149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
151152-Thumbnail Image.png
Description
Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control

Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control policies are often error-prone due to the lack of effective analysis mechanisms and tools. In this dissertation, I present an Assurance Management Framework (AMF) that is designed to cope with various assurance management requirements from both access control system development and policy-based computing. On one hand, the AMF framework facilitates comprehensive analysis and thorough realization of formal access control models in secure system development. I demonstrate how this method can be applied to build role-based access control systems by adopting the NIST/ANSI RBAC standard as an underlying security model. On the other hand, the AMF framework ensures the correctness of access control policies in policy-based computing through automated reasoning techniques and anomaly management mechanisms. A systematic method is presented to formulate XACML in Answer Set Programming (ASP) that allows users to leverage off-the-shelf ASP solvers for a variety of analysis services. In addition, I introduce a novel anomaly management mechanism, along with a grid-based visualization approach, which enables systematic and effective detection and resolution of policy anomalies. I further evaluate the AMF framework through modeling and analyzing multiparty access control in Online Social Networks (OSNs). A MultiParty Access Control (MPAC) model is formulated to capture the essence of multiparty authorization requirements in OSNs. In particular, I show how AMF can be applied to OSNs for identifying and resolving privacy conflicts, and representing and reasoning about MPAC model and policy. To demonstrate the feasibility of the proposed methodology, a suite of proof-of-concept prototype systems is implemented as well.
ContributorsHu, Hongxin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Dasgupta, Partha (Committee member) / Ye, Nong (Committee member) / Arizona State University (Publisher)
Created2012
171895-Thumbnail Image.png
Description
Adversarial threats of deep learning are increasingly becoming a concern due to the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive domains. Among the existing threats, adversarial weight perturbation is an emerging class of threats that attempts to perturb the weight parameters of DNNs to breach security and privacy.In

Adversarial threats of deep learning are increasingly becoming a concern due to the ubiquitous deployment of deep neural networks(DNNs) in many security-sensitive domains. Among the existing threats, adversarial weight perturbation is an emerging class of threats that attempts to perturb the weight parameters of DNNs to breach security and privacy.In this thesis, the first weight perturbation attack introduced is called Bit-Flip Attack (BFA), which can maliciously flip a small number of bits within a computer’s main memory system storing the DNN weight parameter to achieve malicious objectives. Our developed algorithm can achieve three specific attack objectives: I) Un-targeted accuracy degradation attack, ii) Targeted attack, & iii) Trojan attack. Moreover, BFA utilizes the rowhammer technique to demonstrate the bit-flip attack in an actual computer prototype. While the bit-flip attack is conducted in a white-box setting, the subsequent contribution of this thesis is to develop another novel weight perturbation attack in a black-box setting. Consequently, this thesis discusses a new study of DNN model vulnerabilities in a multi-tenant Field Programmable Gate Array (FPGA) cloud under a strict black-box framework. This newly developed attack framework injects faults in the malicious tenant by duplicating specific DNN weight packages during data transmission between off-chip memory and on-chip buffer of a victim FPGA. The proposed attack is also experimentally validated in a multi-tenant cloud FPGA prototype. In the final part, the focus shifts toward deep learning model privacy, popularly known as model extraction, that can steal partial DNN weight parameters remotely with the aid of a memory side-channel attack. In addition, a novel training algorithm is designed to utilize the partially leaked DNN weight bit information, making the model extraction attack more effective. The algorithm effectively leverages the partial leaked bit information and generates a substitute prototype of the victim model with almost identical performance to the victim.
ContributorsRakin, Adnan Siraj (Author) / Fan, Deliang (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Seo, Jae-Sun (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2022
156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
154767-Thumbnail Image.png
Description
Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due to its massive user engagement and structural openness. Although existed, little is still known in the community about new types of vulnerabilities in current microblogging services which could be leveraged by the intelligence-evolving attackers, and more importantly, the corresponding defenses that could prevent both the users and the microblogging service providers from being attacked. This dissertation aims to uncover a number of challenging security and privacy issues in microblogging services and also propose corresponding defenses.

This dissertation makes fivefold contributions. The first part presents the social botnet, a group of collaborative social bots under the control of a single botmaster, demonstrate the effectiveness and advantages of exploiting a social botnet for spam distribution and digital-influence manipulation, and propose the corresponding countermeasures and evaluate their effectiveness. Inspired by Pagerank, the second part describes TrueTop, the first sybil-resilient system to find the top-K influential users in microblogging services with very accurate results and strong resilience to sybil attacks. TrueTop has been implemented to handle millions of nodes and 100 times more edges on commodity computers. The third and fourth part demonstrate that microblogging systems' structural openness and users' carelessness could disclose the later's sensitive information such as home city and age. LocInfer, a novel and lightweight system, is presented to uncover the majority of the users in any metropolitan area; the dissertation also proposes MAIF, a novel machine learning framework that leverages public content and interaction information in microblogging services to infer users' hidden ages. Finally, the dissertation proposes the first privacy-preserving social media publishing framework to let the microblogging service providers publish their data to any third-party without disclosing users' privacy and meanwhile meeting the data's commercial utilities. This dissertation sheds the light on the state-of-the-art security and privacy issues in the microblogging services.
ContributorsZhang, Jinxue (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2016
154095-Thumbnail Image.png
Description
Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile

Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile platforms such as Android have integrated security mechanisms to protect users, most mechanisms do not easily adapt to user's security requirements and rapidly evolving threats. They either fail to provide sufficient intelligence for a user to make informed security decisions, or require great sophistication to configure the mechanisms for enforcing security decisions. These limitations lead to a situation where users are disadvantageous against emerging malware on modern mobile platforms. To remedy this situation, I propose automated and systematic approaches to address three security management tasks: monitoring, assessment, and confinement of mobile apps. In particular, monitoring apps helps a user observe and record apps' runtime behaviors as controlled under security mechanisms. Automated assessment distills intelligence from the observed behaviors and the security configurations of security mechanisms. The distilled intelligence further fuels enhanced confinement mechanisms that flexibly and accurately shape apps' behaviors. To demonstrate the feasibility of my approaches, I design and implement a suite of proof-of-concept prototypes that support the three tasks respectively.
ContributorsJing, Yiming (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
153374-Thumbnail Image.png
Description
Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same time. This tension leads to a user's vulnerability, allowing privacy attacks which can cause physical and emotional distress to a user, sometimes with dire consequences. For example, stalkers can make use of personal information available on an OSN site to their personal gain. This dissertation aims to systematically study a user vulnerability against such privacy attacks.

A user vulnerability can be managed in three steps: (1) identifying, (2) measuring and (3) reducing a user vulnerability. Researchers have long been identifying vulnerabilities arising from user's personal data, including user names, demographic attributes, lists of friends, wall posts and associated interactions, multimedia data such as photos, audios and videos, and tagging of friends. Hence, this research first proposes a way to measure and reduce a user vulnerability to protect such personal data. This dissertation also proposes an algorithm to minimize a user's vulnerability while maximizing their social utility values.

To address these vulnerability concerns, social networking sites like Facebook usually let their users to adjust their profile settings so as to make some of their data invisible. However, users sometimes interact with others using unprotected posts (e.g., posts from a ``Facebook page\footnote{The term ''Facebook page`` refers to the page which are commonly dedicated for businesses, brands and organizations to share their stories and connect with people.}''). Such interactions help users to become more social and are publicly accessible to everyone. Thus, visibilities of these interactions are beyond the control of their profile settings. I explore such unprotected interactions so that users' are well aware of these new vulnerabilities and adopt measures to mitigate them further. In particular, {\em are users' personal attributes predictable using only the unprotected interactions}? To answer this question, I address a novel problem of predictability of users' personal attributes with unprotected interactions. The extreme sparsity patterns in users' unprotected interactions pose a serious challenge. Therefore, I approach to mitigating the data sparsity challenge by designing a novel attribute prediction framework using only the unprotected interactions. Experimental results on Facebook dataset demonstrates that the proposed framework can predict users' personal attributes.
ContributorsGundecha, Pritam S (Author) / Liu, Huan (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Barbier, Geoffrey (Committee member) / Arizona State University (Publisher)
Created2015
153686-Thumbnail Image.png
Description
A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.
ContributorsGong, Xiaowen (Author) / Zhang, Junshan (Thesis advisor) / Cochran, Douglas (Committee member) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
ContributorsZhao, Ziming (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2014
155244-Thumbnail Image.png
Description
Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing.

This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.
ContributorsSun, Jingchao (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2017