Matching Items (19)
Filtering by

Clear all filters

151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
ContributorsSamantray, Prasant (Author) / Parikh, Maulik (Thesis advisor) / Davies, Paul (Committee member) / Vachaspati, Tanmay (Committee member) / Easson, Damien (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2012
171889-Thumbnail Image.png
Description
The first part of this work focuses on the information that neutrinos from core-collapse supernovae (CCSNe) can provide with in the context of multi-messenger astronomy. A CCSN serves as nature’s very own laboratory. Neutrinos from the various phases of a CCSN can be used to gain insights and understanding in

The first part of this work focuses on the information that neutrinos from core-collapse supernovae (CCSNe) can provide with in the context of multi-messenger astronomy. A CCSN serves as nature’s very own laboratory. Neutrinos from the various phases of a CCSN can be used to gain insights and understanding in a much broader context. The localization of a star using presupernova neutrinos is studied and it is shown that their topology can give the direction to the star with an error of ~ 60 degrees. A new phenomenological description of the neutrino gravitational wave memory effect is built, highlighting its detectability, and physics potential in the present context. It is shown that this effect will be detectable in the near future, for a galactic supernova, at deci-Hertz GW interferometers. A novel idea of how observations of the neutrino GW memory from CCSNe will enable time-triggered searches of supernova neutrinos at megaton (Mt) scale neutrino detectors is also presented. This combination of a deci-Hz GW and a Mt-neutrino detector will allow the latter to detect ~ 3 - 30 supernova neutrino events/Mt/per decade of operation.The second part of this work focuses on studying quantum fields in time and space- dependent backgrounds. Generically, such quantum fields get excited (a phenomenon known as particle production) and the quantum excitations then backreact on the background. This scenario is important in all areas of physics, specifically in the context of gravitation and cosmology. This work discusses some simplified models pertaining to this. In particular, the dynamics of a classical field rolling down a linear potential while it is bi-quadratically coupled to a quantum field is studied. The formation of global topological defects in d-dimensions as a result of spontaneous symmetry breaking during a quantum phase transition is also studied. Furthermore, a sine-Gordon kink-antikink collision in the presence of interactions with a scalar field is considered and the regimes of breather and long lived oscillon formation are found.
ContributorsMukhopadhyay, Mainak (Author) / Lunardini, Cecilia C (Thesis advisor) / Vachaspati, Tanmay T (Committee member) / Baumgart, Matthew M (Committee member) / Timmes, Francis F.X. (Committee member) / Arizona State University (Publisher)
Created2022
168517-Thumbnail Image.png
Description
In this dissertation I discuss about calculating one-loop partition function on curved spacetimes and various approaches to build symmetries of gravitational systems, and extending the analysis to the large dimensional spacetimes. I show the calculations pertaining to the contributions to the one-loop determinant for transverse trace-less gravitons in an $n

In this dissertation I discuss about calculating one-loop partition function on curved spacetimes and various approaches to build symmetries of gravitational systems, and extending the analysis to the large dimensional spacetimes. I show the calculations pertaining to the contributions to the one-loop determinant for transverse trace-less gravitons in an $n + 3$-dimensional Schwarzschild black hole background in the large dimension limit, due to the $SO(n+2)$-type tensor and vector fluctuations, using the quasinormal mode method. Accordingly I find the quasinormal modes for these fluctuations as a function of a fiducial mass parameter $\Delta$. I show that the behavior of the one-loop determinant at large $\Delta$ accords with a heat kernel curvature expansion in one lower dimension, lending further evidence towards a membrane picture for black holes in the large dimension limit. I also find that the analysis of building one-loop determinants is similar to that of the AdS, thus serving as a motivation to explore this emergent symmetry in detail. For this, I first build these symmetries for Kerr-(A)dS black holes in arbitrary dimensions and then extend this analysis to the large dimensional Schwarzschild black hole. To study the former, in this dissertation, I discuss how to generalize the notion of hidden conformal symmetry in Kerr/CFT to Kerr-(A)dS black holes in arbitrary dimensions. I also discuss the results on building the $SL(2, R)$ generators directly from the Killing tower, whose Killing tensors and Killing vectors enforce the separability of the equations of motion. This construction amounts to an explicit relationship between hidden conformal symmetries and Killing tensors: I use the Killing tower to build a novel tensor equation connecting the $SL(2,R)$ Casimir with the radial Klein-Gordon operator. For asymptotically flat black holes in four and five dimensions I discuss that the previously known results that were obtained using the ``near-region'' limit and the monodromy method, were recovered. I also perform a monodromy evaluation of the Klein-Gordon scalar wave equation for all Kerr-(A)dS black holes, finding explicit forms for the zero mode symmetry generators. Lastly, I discuss the work on extending this analysis to the large-dimensional Schwarzschild black hole as a step towards building a Large-D/CFT correspondence.
ContributorsPriya, Alankrita (Author) / Keeler, Cynthia (Thesis advisor) / Baumgart, Matthew (Committee member) / Parikh, Maulik (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2021
168760-Thumbnail Image.png
Description
The double copy is a procedure that relates gravity to simpler gauge and scalar field theories. Double copy structure was first discovered in the context of scattering amplitudes, and has since been realized at the level of classical fields and curvatures. This dissertation focuses on mappings between fields (the

The double copy is a procedure that relates gravity to simpler gauge and scalar field theories. Double copy structure was first discovered in the context of scattering amplitudes, and has since been realized at the level of classical fields and curvatures. This dissertation focuses on mappings between fields (the Kerr-Schild double copy) and curvatures (the Weyl double copy). First, the connection between non-singular black holes and non-singular gauge theories is made, which illuminates a subtlety between gravitational horizons and the gauge field strength. Then, a perturbative double copy in the context of the fluid/gravity duality is presented, where the associated gauge theory quantities have surprisingly elegant interpretations in terms of certain classes of Navier-Stokes solutions. Finally, a new formula that provides a consistent treatment of external sources in the Weyl double copy is introduced. After illustrating its consistency with the Kerr-Schild double copy, the sourced Weyl double copy is applied to the most general Petrov type D electro-vac spacetime. Various limits of the general solution are analyzed, including the Kerr-Newman metric and the charged, accelerating black hole.
ContributorsManton, Tucker Daniel (Author) / Easson, Damien A (Thesis advisor) / Keeler, Cynthia (Committee member) / Parikh, Maulik (Committee member) / Wilczek, Frank (Committee member) / Arizona State University (Publisher)
Created2022
193475-Thumbnail Image.png
Description
In this opus, I challenge the claim that inflationary spacetimes must be past geodesi-cally incomplete. To do this, I utilize the warped product formalism of Bishop and O’Neill and build upon the venerable Friedmann Robertson Walker (FRW) space- time formalism to the Generalized Friedmann Robertson Walker (GFRW) spacetime formalism, where the achronal spacelike

In this opus, I challenge the claim that inflationary spacetimes must be past geodesi-cally incomplete. To do this, I utilize the warped product formalism of Bishop and O’Neill and build upon the venerable Friedmann Robertson Walker (FRW) space- time formalism to the Generalized Friedmann Robertson Walker (GFRW) spacetime formalism, where the achronal spacelike sections can be any geodesically complete Riemannian manifold (Σ, gΣ ). I then solve the GFRW geodesic equation in generality as a functional of the scale factor f , and derive a main theorem, which characterizes the geodesic completeness in GFRW spacetimes. After offering a definition of infla- tion which enumerates the topological requirements which permit a local foliation of a scale factor, I discuss a cohort of geodesically complete inflationary GFRWs which have averaged expansion quantity Havg > 0, proving that classical counter-examples to the theorem of Borde, Guth, and Vilenkin do exist. I conclude by introducing conjectures concerning the relationship between geodesic completeness and inflation: in particular, I speculate that if a spacetime is geodesically complete and non-trivial, it must inflate!
ContributorsLesnefsky, Joseph Edward (Author) / Easson, Damien A (Thesis advisor) / Davies, Paul C (Thesis advisor) / Parikh, Maulik (Committee member) / Kotschwar, Brett (Committee member) / Arizona State University (Publisher)
Created2024
193462-Thumbnail Image.png
Description
Computable properties of quantum states are given a dual gravitational interpretation via the AdS/CFT correspondence. For holographic states, boundary entanglement entropy is dual to the area of bulk geodesics, known as Ryu-Takayanagi surfaces. Furthermore, the viability of states to admit a holographic dual at all is constrained by their entanglement

Computable properties of quantum states are given a dual gravitational interpretation via the AdS/CFT correspondence. For holographic states, boundary entanglement entropy is dual to the area of bulk geodesics, known as Ryu-Takayanagi surfaces. Furthermore, the viability of states to admit a holographic dual at all is constrained by their entanglement structure. Entanglement therefore defines a coarse classification of states in the Hilbert space. Similarly, how a state transforms under a group of operators also provides a classification on the Hilbert space. Certain states, e.g. stabilizer states, are invariant under large sets of operations, and consequently can be simulated on a classical computer. Cayley graphs offer a useful representation for a group of operators, where vertices represent group elements and edges represent group generators. In this representation, the orbit of a state under action of the group can also be represented as a ``reachability graph'', defined as a quotient of the group Cayley graph. Reachability graphs can be dressed to encode entanglement information, making them a useful tool for studying entanglement dynamics under quantum operations. Further quotienting a reachability graph by group elements that fix a chosen state property, e.g. entanglement entropy, builds a ``contracted graph''. Contracted graphs provide explicit bounds on state parameter evolution under quantum circuits. In this work, an upper bound on entropy vector evolution under Clifford group action is presented. Another important property of quantum systems is magic, which quantifies the difficulty of classically simulating a quantum state. Magic and entanglement are intimately related, but the two are not equivalent measures of complexity. Nonetheless, entanglement and magic play complementary roles when describing emergent gravitational phenomena in AdS/CFT. This manuscript describes the interplay between entanglement and magic, and offers a holographic interpretation for magic as cosmic brane back-reaction.
ContributorsMunizzi, William Richard (Author) / Keeler, Cynthia (Thesis advisor) / Parikh, Maulik (Committee member) / Baumgart, Matthew (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2024
157597-Thumbnail Image.png
Description
The fuel cell is a promising device that converts the chemical energy directly into the electrical energy without combustion process. However, the slow reaction rate of the oxygen reduction reaction (ORR) necessitates the development of cathode catalysts for low-temperature fuel cells. After a thorough literature review in Chapter 1, the

The fuel cell is a promising device that converts the chemical energy directly into the electrical energy without combustion process. However, the slow reaction rate of the oxygen reduction reaction (ORR) necessitates the development of cathode catalysts for low-temperature fuel cells. After a thorough literature review in Chapter 1, the thesis is divided into three parts as given below in Chapters 2-4.

Chapter 2 describes the study on the Pt and Pt-Me (Me: Co, Ni) alloy nanoparticles supported on the pyrolyzed zeolitic imidazolate framework (ZIF) towards ORR. The Co-ZIF and NiCo-ZIF were synthesized by the solvothermal method and then mixed with Pt precursor. After pyrolysis and acid leaching, the PtCo/NC and PtNiCo/NC were evaluated in proton exchange membrane fuel cells (PEMFC). The peak power density exhibited > 10% and 15% for PtCo/NC and PtNiCo/NC, respectively, compared to that with commercial Pt/C catalyst under identical test conditions.

Chapter 3 is the investigation of the oxygen vacancy (OV) effect in a-MnO2 as a cathode catalyst for alkaline membrane fuel cells (AMFC). The a-MnO2 nanorods were synthesized by hydrothermal method and heated at 300, 400 and 500 ℃ in the air to introduce the OV. The 400 ℃ treated material showed the best ORR performance among all other samples due to more OV in pure a-MnO2 phase. The optimized AMFC electrode showed ~ 45 mW.cm-2, which was slightly lower than that with commercial Pt/C (~60 mW.cm-2).

Chapter 4 is the density functional theory (DFT) study of the protonation effect and active sites towards ORR on a-MnO2 (211) plane. The theoretically optimized oxygen adsorption and hydroxyl ion desorption energies were ~ 1.55-1.95 eV and ~ 0.98-1.45 eV, respectively, by Nørskov et al.’s calculations. All the configurations showed oxygen adsorption and hydroxyl ion desorption energies were ranging from 0.27 to 1.76 eV and 1.59 to 15.0 eV, respectively. The site which was close to two Mn ions showed the best oxygen adsorption and hydroxyl ion desorption energies improvement with the surface protonation.

Based on the results given in Chapters 1-4, the major findings are summarized in Chapter 5.
ContributorsShi, Xuan, Ph.D (Author) / Kannan, Arunachalanadar Mada (Thesis advisor) / Liu, Jingyue (Committee member) / Nam, Changho (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2019
157133-Thumbnail Image.png
Description
Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$)

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.
ContributorsRybalka, Denys (Author) / Shovkovy, Igor (Thesis advisor) / Lunardini, Cecilia (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2019
154866-Thumbnail Image.png
Description
Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical

Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical Maxwell’s equations in a moving medium or at

rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum

tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its

connection with the Pauli-Lubanski vector from the viewpoint of the complex electromag- ´

netic field, E+ iH. To this end, a complex covariant form of Maxwell’s equations is used.

Chapter 4 analyzes basic relativistic wave equations for the classical fields, such as Dirac’s

equation, Weyl’s two-component equation for massless neutrinos and the Proca, Maxwell

and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir ´

operators of the Poincare group. A connection between the spin of a particle/field and ´

consistency of the corresponding overdetermined system is emphasized in the massless

case. Chapter 5 focuses on the so-called generalized quantum harmonic oscillator, which

is a Schrodinger equation with a time-varying quadratic Hamiltonian operator. The time ¨

evolution of exact wave functions of the generalized harmonic oscillators is determined

in terms of the solutions of certain Ermakov and Riccati-type systems. In addition, it is

shown that the classical Arnold transform is naturally connected with Ehrenfest’s theorem

for generalized harmonic oscillators. In Chapter 6, as an example of the usefulness of the

methods introduced in Chapter 5 a model for the quantization of an electromagnetic field

in a variable media is analyzed. The concept of quantization of an electromagnetic field

in factorizable media is discussed via the Caldirola-Kanai Hamiltonian. A single mode

of radiation for this model is used to find time-dependent photon amplitudes in relation

to Fock states. A multi-parameter family of the squeezed states, photon statistics, and the

uncertainty relation, are explicitly given in terms of the Ermakov-type system.
ContributorsLanfear, Nathan A (Author) / Suslov, Sergei (Thesis advisor) / Kotschwar, Brett (Thesis advisor) / Platte, Rodrigo (Committee member) / Matyushov, Dmitry (Committee member) / Kuiper, Hendrik (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016