Matching Items (3)
Filtering by

Clear all filters

151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
155143-Thumbnail Image.png
Description
The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in

The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in polarized electron-proton scattering. Polarized electron-proton scattering experiments have revealed a significant decrease in \(\mu G_E/G_M\) at large \(Q^2\), in contrast to previous measurements from unpolarized electron-proton scattering. The commonly accepted hypothesis is that the discrepancy in the form factor ratio is due to neglected higher-order terms in the elastic electron-proton scattering cross section, in particular the two-photon exchange amplitude.

The goal of OLYMPUS was to measure the two-photon exchange contribution by measuring the positron-proton to electron-proton elastic scattering cross section ratio, \(\sigma_{e^+p}/\sigma_{e^-p}\). The two-photon exchange contribution is correlated to the deviation of the cross section ratio from unity.

In 2012, the OLYMPUS experiment collected over 4 fb\(^{-1}\) of \(e^+p\) and \(e^-p\) scattering data using electron and positron beams incident on a hydrogen gas target. The scattered leptons and protons were measured exclusively with a large acceptance spectrometer. OLYMPUS observed a slight rise in \(\sigma_{e^+p}/\sigma_{e^-p}\) of at most 1-2\% over a \(Q^2\) range of \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). This work discusses the motivations, experiment, analysis method, and the preliminary results for the cross section ratio as measured by OLYMPUS.
ContributorsIce, Lauren (Author) / Alarcon, Ricardo O (Thesis advisor) / Dugger, Michael (Committee member) / Lebed, Richard (Committee member) / Ritchie, Barry (Committee member) / Arizona State University (Publisher)
Created2016
158815-Thumbnail Image.png
Description
Recent developments inspired by string theoretic considerations provide multiple maps between gravitational and non-gravitational degrees of freedom. In this dis- sertation I discuss aspects of three such dualities, the gauge/gravity duality and how it applies to condensed matter systems, the fluid-gravity duality, and the color-kinematics duality.

The first of these, colloquially

Recent developments inspired by string theoretic considerations provide multiple maps between gravitational and non-gravitational degrees of freedom. In this dis- sertation I discuss aspects of three such dualities, the gauge/gravity duality and how it applies to condensed matter systems, the fluid-gravity duality, and the color-kinematics duality.

The first of these, colloquially referred to as holography, in its simplest form posits a mapping of d-dimensional conformal field theory (boundary) partition functions onto d+1 dimensional gravitational(bulk) partition functions, where the space-time carries a negative cosmological constant. In this dissertation I discuss the results of our calculations examining the emergence of Fermi-surface like structures in the bulk spacetime despite the absence of explicit Fermions in the theory.Specifically the 4+1 dimensional Einstein-Maxwell-Chern-Simons theory with scalar degrees of freedom, with and without symmetry breaking is considered. These theories are gravity duals to spatially modulated gauge theories. The results of calculations presented here indicate the existence of a rich phase space, most prominently Fermi shells are seen.

The second set of dualities considered are the color-kinematic duality, also known as the double-copy paradigm and the fluid-gravity duality. The color-kinematic duality involves identifying spin-2 amplitudes as squares of spin-1 gauge amplitudes. This double copy picture is utilized to construct “single copy” representations for space- times where Einstein’s equations reduce to incompressible Navier-Stokes equations. In this dissertation I show how spacetimes that characterize irrotational fluids and constant vorticity fluids each map to distinct algebraically special spacetimes. The Maxwell fields obtained via the double-copy picture for such spacetimes further provide interesting parallels, for instance, the vorticity of the fluid is proportional to the magnetic field of the associated gauge field.
ContributorsMonga, Nikhil (Author) / Keeler, Cynthia A. (Thesis advisor) / Lebed, Richard (Committee member) / Erten, Onur (Committee member) / Baumgart, Matthew (Committee member) / Arizona State University (Publisher)
Created2020