Matching Items (3)
Filtering by

Clear all filters

154126-Thumbnail Image.png
Description
Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to

Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to developing this understanding as well as building multi-scale models of fuel behavior with predicting capabilities. In this work, modeling techniques were developed to study effects of microstructure on Young’s modulus, which was selected as a key representative property that affects overall mechanical behavior, using experimental data obtained from micro-cantilever bending testing as benchmarks. Beam theory was firstly introduced to calculate Young's modulus of UO2 from the experimental data and then three-dimensional finite element models of the micro-cantilever beams were constructed to simulate bending tests in UO2 at room temperature. The influence of the pore distribution was studied to explain the discrepancy between predicted values and experimental results. Results indicate that results of tests are significantly affected by porosity given that both pore size and spacing in the samples are of the order of the micro-beam dimensions. Microstructure reconstruction was conducted with images collected from three-dimensional serial sectioning using focused ion beam (FIB) and electron backscattering diffraction (EBSD) and pore clusters were placed at different locations along the length of the beam. Results indicate that the presence of pore clusters close to the substrate, i.e., the clamp of the micro-cantilever beam, has the strongest effect on load-deflection behavior, leading to a reduction of stiffness that is the largest for any location of the pore cluster. Furthermore, it was also found from both numerical and i

analytical models that pore clusters located towards the middle of the span and close to the end of the beam only have a very small effect on the load-deflection behavior, and it is concluded that better estimates of Young's modulus can be obtained from micro- cantilever experiments by using microstructurally explicit models that account for porosity in about one half of the beam length close to the clamp. This, in turn, provides an avenue to simplify micro-scale experiments and their analysis.
ContributorsGong, Bowen (Author) / Peralta, Pedro (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2015
154569-Thumbnail Image.png
Description
Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such

Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint.

Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material’s mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.
ContributorsMayer, Carl Randolph (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiang, Hanqing (Committee member) / Molina-Aldareguia, Jon (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2016
157722-Thumbnail Image.png
Description
With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals

With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals or ceramics), and exhibit very high strength, wear resistance and radiation tolerance. This thesis is focused on the fabrication and mechanical characterization of nanolaminates composed of Copper and Cobalt, two metals which are nearly immiscible across the entire composition range. The synthesis of these Cu-Co nanolaminates is performed using sputtering, a well-known and technologically relevant physical vapor deposition process. X-ray diffraction is used to characterize the microstructure of the nanolaminates. Cu-Co nanolaminates with different layer thicknesses are tested using microelectromechanical systems (MEMS) based tensile testing devices fabricated using photolithography and etching processes. The stress-strain behavior of nanolaminates with varying layer thicknesses are analysed and correlated to their microstructure.
ContributorsRajarajan, Santhosh Kiran (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2019