Matching Items (12)
Filtering by

Clear all filters

152932-Thumbnail Image.png
Description
The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and

The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and wollastonite nano-fibers were developed and tested under low vacuum conditions to simulate severe evaporation conditions and expedite the drying process causing plastic shrinkage cracks. Cumulative moisture loss, evaporation rates, and diffusivity were analyzed by means of a 2-stage diffusion simulation approach, developed previously in Arizona State University. Effect of fiber-matrix interaction on the transport properties of the composite were evaluated using the existing approach. Morphology of the cracked surface was investigated by the means of image analysis wherein length, width, area and density of the cracks were computed to help characterize the contribution of fiber and textile in the cracking phenomenon. Additionally, correlation between cumulative moisture loss and crack propagation was attempted. The testing procedures and associated analytical methods were applied to evaluate effectiveness of four wollastonite fiber sizes and also a hybrid reinforcement system with alkali-resistant glass (ARG) textile in improving shrinkage cracking related parameters. Furthermore, the experimental and analytical approach was extended to magnified version of the existing shrinkage testing set-up to study the size effect of these composites when subjected to matching drying conditions. Different restraining mechanisms were used to study the simulation of the cracking phenomena on a larger specimen. Paste and mortar formulations were developed to investigate size effect on shrinkage resistance of cementitious composites.
ContributorsKachala, Robert (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
136138-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Military Science (Contributor)
Created2015-05
133461-Thumbnail Image.png
Description
Epoxy resins and composite materials are well characterized in their mechanical properties. However these properties change as the materials age under different conditions, as their microstructure undergoes changes from the absorption or desorption of water. Many of these microstructural changes occur at the interfacial region between where the matrix of

Epoxy resins and composite materials are well characterized in their mechanical properties. However these properties change as the materials age under different conditions, as their microstructure undergoes changes from the absorption or desorption of water. Many of these microstructural changes occur at the interfacial region between where the matrix of the composite meets the reinforcement fiber, but still result in significant effects in the material properties. These effects have been studied and characterized under a variety of conditions by artificially aging samples. The artificial aging process focuses on exposing samples to environmental conditions such as high temperature, UV light, and humidity. While conditions like this are important to study, in real world applications the materials will not be simply resting in a laboratory created environment. In most circumstances, they are subjected to some kind of stress or impact. This report will focus on designing an experiment to analyze aged samples under tensile loading and creating a fixture that will sustain loading while the samples are aged. . The conditions that will be tested are control conditions at standard temperature and humidity in the laboratory, submerged, thermal heating, submerged and heated, and hygrothermal.
ContributorsNothern, Bradley James (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133295-Thumbnail Image.png
Description
The project consists of steps that a Formula SAE team could take into developing their first carbon fiber monocoque chassis. The project is based on an interview with a successful team that has build carbon monocoques for the last several years. The project covers the steps into designing a carbon

The project consists of steps that a Formula SAE team could take into developing their first carbon fiber monocoque chassis. The project is based on an interview with a successful team that has build carbon monocoques for the last several years. The project covers the steps into designing a carbon monocoque, including aspects that need to be highlighted in the design process as well as an outline of the overall rules and regulations regarding carbon fiber monocoques. The project also encompasses simple finite element analysis procedure that would introduce teams into carbon fiber composite sandwich analysis and its applications in racecar monocoques. The project also includes steps in manufacturing a carbon fiber monocoque beginning from methods to acquire necessary materials to the final process of de-molding the monocoque. The method has been used before from several FSAE teams, proving its viability. The goal is that through this report, teams could have an idea of where to start in developing their carbon monocoques and have a clear path to take on going from initial designs up until a final finished product.
ContributorsEhrke, Lawrence Herman (Co-author) / Andiyastika, Gede P. (Co-author) / Patel, Jay (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133750-Thumbnail Image.png
Description
Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set

Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set by Fiber Reinforced Composite (FRC) Pipe and Fittings for Underground Fire Protection Service [1], developing a library for different damage types for seamless composite pipes, and evaluating pre-existing flaws with flash thermography, carrying out hydrostatic testing, and performing nondestructive testing (NDT) to characterize damage induced on the pipes such as cracking, crazing, and fiber breakage. The tasks outlined will be used to develop design guidelines for different combinations of loading systems.
ContributorsFoster, Collin William (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This paper presents the methods and materials used to investigate the fatigue fracture properties of i) seamless twill weave carbon fiber and ii) stitch bonded biaxial carbon fiber polymer matrix composite. Additionally, the effect of notch tip placement relative to longitudinal fiber toes is investigated. The process for observing and

This paper presents the methods and materials used to investigate the fatigue fracture properties of i) seamless twill weave carbon fiber and ii) stitch bonded biaxial carbon fiber polymer matrix composite. Additionally, the effect of notch tip placement relative to longitudinal fiber toes is investigated. The process for observing and characterizing fatigue crack damage propagation is presented. The fatigue fracture behavior is compared with data acquired from compact tension samples subjected to static tension tests in order to develop damage tolerant design guidelines for tube structures under fatigue loading.
ContributorsOramas, Mateo Alexis (Author) / Chattopadhyay, Aditi (Thesis director) / Yekani Fard, Masoud (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153782-Thumbnail Image.png
Description
Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in

Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young’s Modulus and Poisson’s ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.
ContributorsHarrington, Joseph (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2015
155612-Thumbnail Image.png
Description
Pultrusion manufacturing technique stands at the forefront for efficient production of continuous, uniform concrete composites for use in large scale structural applications. High volume and low labor, among other benefits such as improved impregnation and better sample consistency, stand as some of the crucial advances found in automated pultrusion. These

Pultrusion manufacturing technique stands at the forefront for efficient production of continuous, uniform concrete composites for use in large scale structural applications. High volume and low labor, among other benefits such as improved impregnation and better sample consistency, stand as some of the crucial advances found in automated pultrusion. These advantages introduce textile reinforced concrete (TRC) composites as a potential surrogate for wood, light gauge steel, and other common structural materials into an ever changing and broadening market of industrial grade structural sections. With the potential modifications of textile geometry, textile type, section geometry, and connection type, the options presented by TRC sections seem nearly boundless. Automated pultrusion presents the ability to manufacture many different TRC composite types in at a quickened rate opening up a new field of study of structural materials.

The objective of this study centered on two studies including the development of an automated pultrusion system for the manufacturing of TRC composites and ultimately the assessment of composites created with the pultrusion technique and their viability as a relevant structural construction material. Upon planning, fabrication, and continued use of an automated pultrusion system in Arizona State University’s Structures Lab, an initial, comparative study of polypropylene microfiber composites was conducted to assess fiber reinforced concrete composites, manufactured with Filament Winding Technique, and textile reinforced concrete composites, manufactured with Automated Pultrusion Technique, in tensile and flexural mechanical response at similar reinforcement dosages. A secondary study was then conducted to measure the mechanical behavior of carbon, polypropylene, and alkali-resistant glass TRC composites and explore the response of full scale TRC structural shapes, including angle and channel sections. Finally, a study was conducted on the connection type for large scale TRC composite structural sections in tension and compression testing.
ContributorsBauchmoyer, Jacob Macgregor (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2017
147599-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that made using the typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is known for. This will be accomplished by varying the amount of plastic in the aggregate. If successful, this project would allow concrete to be used in applications it would typically not be suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate it was determined that the control group experienced an average peak stress of 2089 psi, the 16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9 minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50% plastic group. Taking the average of the normalized weights of the cylindrical samples it was determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15 oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959 oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of plastic to rock aggregate can increase the failure time and the peak strength of a composite concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic aggregate in composite concrete. <br/>Some possible future studies related to this subject material are adding aluminum to the concrete, having better molds, looking for the right consistency in each mixture, mixing for each mold individually, and performing other tests on the samples.

ContributorsClegg, Lauren Taylor (Co-author) / Benning, Taylor (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147600-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is<br/>known for. This will be accomplished by varying the amount of plastic in the aggregate. If<br/>successful, this project would allow concrete to be used in applications it would typically not be<br/>suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate<br/>it was determined that the control group experienced an average peak stress of 2089 psi, the<br/>16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group<br/>experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an<br/>average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes<br/>and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9<br/>minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50%<br/>plastic group. Taking the average of the normalized weights of the cylindrical samples it was<br/>determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15<br/>oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959<br/>oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be<br/>beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of<br/>plastic to rock aggregate can increase the failure time and the peak strength of a composite<br/>concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic<br/>aggregate in composite concrete.<br/>Some possible future studies related to this subject material are adding aluminum to the<br/>concrete, having better molds, looking for the right consistency in each mixture, mixing for each<br/>mold individually, and performing other tests on the samples.

ContributorsBenning, Taylor Ann (Co-author) / Clegg, Lauren (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05