Matching Items (8)
Filtering by

Clear all filters

150833-Thumbnail Image.png
Description
Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components are often manually inspected to detect the presence of damage. This technique, known as schedule based maintenance, however, is expensive, time-consuming, and often limited to easily accessible structural elements. Therefore, there is an increased demand for robust and efficient Structural Health Monitoring (SHM) techniques that can be used for Condition Based Monitoring, which is the method in which structural components are inspected based upon damage metrics as opposed to flight hours. SHM relies on in situ frameworks for detecting early signs of damage in exposed and unexposed structural elements, offering not only reduced number of schedule based inspections, but also providing better useful life estimates. SHM frameworks require the development of different sensing technologies, algorithms, and procedures to detect, localize, quantify, characterize, as well as assess overall damage in aerospace structures so that strong estimations in the remaining useful life can be determined. The use of piezoelectric transducers along with guided Lamb waves is a method that has received considerable attention due to the weight, cost, and function of the systems based on these elements. The research in this thesis investigates the ability of Lamb waves to detect damage in feature dense anisotropic composite panels. Most current research negates the effects of experimental variability by performing tests on structurally simple isotropic plates that are used as a baseline and damaged specimen. However, in actual applications, variability cannot be negated, and therefore there is a need to research the effects of complex sample geometries, environmental operating conditions, and the effects of variability in material properties. This research is based on experiments conducted on a single blade-stiffened anisotropic composite panel that localizes delamination damage caused by impact. The overall goal was to utilize a correlative approach that used only the damage feature produced by the delamination as the damage index. This approach was adopted because it offered a simplistic way to determine the existence and location of damage without having to conduct a more complex wave propagation analysis or having to take into account the geometric complexities of the test specimen. Results showed that even in a complex structure, if the damage feature can be extracted and measured, then an appropriate damage index can be associated to it and the location of the damage can be inferred using a dense sensor array. The second experiment presented in this research studies the effects of temperature on damage detection when using one test specimen for a benchmark data set and another for damage data collection. This expands the previous experiment into exploring not only the effects of variable temperature, but also the effects of high experimental variability. Results from this work show that the damage feature in the data is not only extractable at higher temperatures, but that the data from one panel at one temperature can be directly compared to another panel at another temperature for baseline comparison due to linearity of the collected data.
ContributorsVizzini, Anthony James, II (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
189279-Thumbnail Image.png
Description
For the past two centuries, coal has played a vital role as the primary carbon source, fueling industries and enabling the production of essential carbon-rich materials, including carbon nanotubes, graphite, and diamond. However, the global transition towards sustainable energy production has resulted in a decline in coal usage for energy

For the past two centuries, coal has played a vital role as the primary carbon source, fueling industries and enabling the production of essential carbon-rich materials, including carbon nanotubes, graphite, and diamond. However, the global transition towards sustainable energy production has resulted in a decline in coal usage for energy purposes, with the United States alone witnessing a substantial 50% reduction over the past decade. This shift aligns with the UN’s 2030 sustainability goals, which emphasize the reduction of greenhouse gas emissions and the promotion of cleaner energy sources. Despite the decreased use in energy production, the abundance of coal has sparked interest in exploring its potential for other sustainable and valuable applications.In this context, Direct Ink Writing (DIW) has emerged as a promising additive manufacturing technique that employs liquid or gel-like resins to construct three-dimensional structures. DIW offers a unique advantage by allowing the incorporation of particulate reinforcements, which enhance the properties and functionalities of the materials. This study focuses on evaluating the viability of coal as a sustainable and cost-effective substitute for other carbon-based reinforcements, such as graphite or carbon nanotubes. The research utilizes a thermosetting resin based on phenol-formaldehyde (commercially known as Bakelite) as the matrix, while pulverized coal (250 µm) and carbon black (CB) function as the reinforcements. The DIW ink is meticulously formulated to exhibit shear-thinning behavior, facilitating uniform and continuous printing of structures. Mechanical property testing of the printed structures was conducted following ASTM standards. Interestingly, the study reveals that incorporating a 2 wt% concentration of coal in the resin yields the most significant improvements in tensile modulus and flexural strength, with enhancements of 35% and 12.5% respectively. These findings underscore the promising potential of coal as a sustainable and environmentally friendly reinforcement material in additive manufacturing applications. By harnessing the unique properties of coal, this research opens new avenues for its utilization in the pursuit of greener and more efficient manufacturing processes.
ContributorsSundaravadivelan, Barath (Author) / Song, Kenan (Thesis advisor) / Marvi, Hamidreza (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2023
187492-Thumbnail Image.png
Description
High-entropy alloys (HEAs) is a new class of materials which have been studied heavily due to their special mechanical properties. HEAs refers to alloys with multiple equimolar or nearly equimolar elements. HEAs show exceptional and attractive properties currently absent from conventional alloys, which make them the center of intense investigation.

High-entropy alloys (HEAs) is a new class of materials which have been studied heavily due to their special mechanical properties. HEAs refers to alloys with multiple equimolar or nearly equimolar elements. HEAs show exceptional and attractive properties currently absent from conventional alloys, which make them the center of intense investigation. HEAs obtain their properties from four core effects that they exhibit and most of the work on them have been dedicated to study their mechanical properties. In contrast, little or no research have gone into studying the functional or even thermal properties of HEAs. Some HEAs have also shown exceptional or very high melting points. According to the definition of HEAs, Si-Ge-Sn alloys with equal or comparable concentrations of the three group IV elements belong to the category of HEAs. Thus, the equimolar components of Si-Ge-Sn alloys probably allow their atomic structures to display the same fundamental effects of metallic HEAs. The experimental fabrication of such alloys has been proven to be very difficult, which is mainly due to differences between the properties of their constituent elements, as indicated from their binary phase diagrams. However, previous computational studies have shown that SiGeSn HEAs have some very interesting properties, such as high electrical conductivity, low thermal conductivity and semiconducting properties. In this work, going for a complete characterization of the SiGeSn HEA properties, the melting point of this alloy is studied using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The aim is to investigate the effects of high Sn content in this alloy on the melting point compared with the traditional SiGe alloys. Classical MD simulations results strongly indicates that none of the available empirical potentials is able to predict accurate or reasonable melting points for SiGeSn HEAs and most of its subsystems. DFT calculations results show that SiGeSn HEA have a melting point which represent the mean value of its constituent elements and that no special deviations are found. This work contributes to the study of SiGeSn HEA properties, which can serve as guidance before the successful experimental fabrication of this alloy.
ContributorsAlqaisi, Ahmad Madhat Odeh (Author) / Hong, Qi-Jun (Thesis advisor) / Zhuang, Houlong (Thesis advisor) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2023
171399-Thumbnail Image.png
Description
With the abundance of increasingly large datasets, the ability to predict the phase of high-entropy alloys (HEAs) based solely on elemental composition could become a reliable tool for the discovery of new HEAs. However, as the amount of data expands so does the computational time and resources required to train

With the abundance of increasingly large datasets, the ability to predict the phase of high-entropy alloys (HEAs) based solely on elemental composition could become a reliable tool for the discovery of new HEAs. However, as the amount of data expands so does the computational time and resources required to train predictive classical machine learning models. Quantum computers, which use quantum bits (qubits), could be the solution to overcoming these demands. Their ability to use quantum superposition and interference to perform calculations could be the key to handling large amounts of data. In this work, a hybrid quantum-classical machine learning algorithm is implemented on both quantum simulators and quantum processors to perform the supervised machine learning task. Their feasibility as a future tool for HEA discovery is evaluated based on the algorithm’s performance. An artificial neural network (ANN), run by classical computers, is also trained on the same data for performance comparison. The accuracy of the quantum-classical model was found to be comparable to the accuracy achieved by the classical ANN with a slight decrease in accuracy when ran on quantum hardware due to qubit susceptibility to decoherence. Future developments in the applied quantum machine learning method are discussed.
ContributorsBrown, Payden Lance (Author) / Zhuang, Houlong (Thesis advisor) / Ankit, Kumar (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157742-Thumbnail Image.png
Description
Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting

Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting area for research. The analysis of propagation of fatigue crack growth under environmental interaction and the life prediction is significant to reduce the maintenance costs and assure structural integrity. Without proper investigation of the crack extension under corrosion fatigue, the scenario can lead to catastrophic disasters due to premature failure of a structure. An attempt has been made in this study to predict the corrosion fatigue crack growth with reasonable accuracy. Models that have been developed so far predict the crack propagation for constant amplitude loading (CAL). However, most of the industrial applications encounter random loading. Hence there is a need to develop models based on time scale. An existing time scale model that can predict the fatigue crack growth for constant and variable amplitude loading (VAL) in the Paris region is initially modified to extend the prediction to near threshold and unstable crack growth region. Extensive data collection was carried out to calibrate the model for corrosion fatigue crack growth (CFCG) based on the experimental data. The time scale model is improved to incorporate the effect of corrosive environments such as NaCl and dry hydrogen in the fatigue crack growth (FCG) by investigation of the trend in change of the crack growth. The time scale model gives the advantage of coupling the time phenomenon stress corrosion cracking which is suggested as a future work in this paper.
ContributorsKurian, Bianca (Author) / Liu, Yongming (Thesis advisor) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
158390-Thumbnail Image.png
Description
Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an

Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an outburst of intense research to understand the feasible synthesis and exciting material properties of these class of materials. Despite their potential, studies to date show that it is extremely challenging to synthesize and manufacture 2D MOF at large scales with ultimate control over crystallinity and thickness.

The field of research to date has produced various synthesis routes which can further be used to design 2D materials with a range of organic ligands and metal linkers. This thesis seeks to extend these design rules to demonstrate the competitive growth of two- dimensional (2D) metal-organic frameworks(MOF) and their alloys to predict which ligands and metals can be combined, study the intercalation of Bromine in these frameworks and their alloys which leads to the discovery of reduced band gap in the layered MOF alloy.

In this study it has been shown that the key factor in achieving layered 2D MOFs and it relies on the use of carefully engineered ligands to terminate the out-of-plane sites on metal clusters thereby eliminating strong interlayer hydrogen bond formation.

The major contribution of pyridine is to replace interlayer hydrogen bonding or other weak chemical bonds. Overall results establish an entirely new synthesis method for producing highly crystalline and scalable 2D MOFs and their alloys. Bromine intercalation merits future studies on band gap engineering in these layered materials.
ContributorsVijay, Shiljashree (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew D (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
168519-Thumbnail Image.png
Description
This research seeks to answer the question if there is a singular relationship between stishovite nucleation and the atomistic structure of the preshocked amorphous SiO$_2$. To do this a stishovite manufacturing method is developed in which 1,152 samples were produced. The majority of these samples did crystallize. The method was

This research seeks to answer the question if there is a singular relationship between stishovite nucleation and the atomistic structure of the preshocked amorphous SiO$_2$. To do this a stishovite manufacturing method is developed in which 1,152 samples were produced. The majority of these samples did crystallize. The method was produced through two rounds of experiments and fine-tuning with the pressure damp, temperature damp, shock pressure using an NPHug fix, and sample origin. A new random atomic insertion method was used to generate a new and different SiO$_2$ amorphous structure not before seen within the research literature. The optimal values for shock were found to be 60~GPa for randomly atom insertion samples and 55~GPa for quartz origin samples. Temperature damp appeared to have a slight effect optimizing at 0.05~ps and the pressure damp had no visible effect, testing was done with temperature damp from 0.05 to 0.5~ps and pressure damp from 0.1 to 10.0~ps. There appeared to be significant randomness in crystallization behavior. The preshocked and postnucleated samples were transformed into Gaussian fields of crystal, mass, and charge. These fields were divided and classified using a cut-off method taking the number of crystals produced in portions of each simulation and classifying each potion as nucleated or non-nucleated. Data in which some nucleation but not a critical amount was present was removed constituting 2.6\% to 20.3\% of data in all tests. A max method was also used which takes only the maximum portions of each simulation to classify as nucleating. There are three other variables tested within this work, a sample size of 18,000 or 72,728~atoms, Gaussian variance of 1 or 4~\AA, and Convolutional neural network (CNN) architecture of a garden verity or all convolution along with the portioning classification method, sample origination, and Gaussian field type. In total 64 tests were performed to try every combination of variable. No significant classifications were made by the CNNs to nucleation or non-nucleation portions. The results clearly confirmed that the data was not abstracting to atomistic structure and was random by all classifications of the CNNs. The all convolution CNN testing did show smoother outcomes in training with less fluctuations. 59\% of all validation accuracy was held at 0.5 for a random state and 84\% was within $\pm0.02$ of 0.5. It is conclusive that prenucleation structure is not the sole predictor of nucleation behavior. It is not conclusive if prenucleation structure is a partial or non-factor within nucleation of stishovite from amorphous SiO$_2$.
ContributorsChristen, Jonathan Scorr (Author) / Oswald, Jay (Thesis advisor) / Muhich, Christopher (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021