Matching Items (93)
Filtering by

Clear all filters

Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
131374-Thumbnail Image.png
Description
This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used to characterize the corrosion behavior of samples before and after SMAT. Electrochemical tests indicated an improved corrosion resistance after application of SMAT process. The observed improvements in corrosion properties are potentially due to microstructural changes in the material surface induced by SMAT which encouraged the formation of a passive oxide layer. Further testing and research are required to understand the corrosion related effects of cryogenic SMAT and initial-surface finish as the COVID-19 pandemic inhibited experimentation plans.
ContributorsDeorio, Jordan Anthony (Author) / Solanki, Kiran (Thesis director) / Rajagopalan, Jagannathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
171542-Thumbnail Image.png
Description
Achieving a viable process for advanced manufacturing of ceramics and metal-ceramic composites is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. In this dissertation, the processing, and manufacturing of ceramics and ceramic

Achieving a viable process for advanced manufacturing of ceramics and metal-ceramic composites is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. In this dissertation, the processing, and manufacturing of ceramics and ceramic composites are addressed, specifically, a process for three-dimensional (3D) printing of polymer-derived ceramics (PDC), and a process for low-cost manufacturing as well as healing of metal-ceramic composites is demonstrated.Three-dimensional printing of ceramics is enabled by dispensing the preceramic polymer at the tip of a moving nozzle into a gel that can reversibly switch between fluid and solid states, and subsequently thermally cross-linking the entire printed part “at once” while still inside the same gel was demonstrated. The solid gel converts to fluid at the tip of the moving nozzle, allowing the polymer solution to be dispensed and quickly returns to a solid state to maintain the geometry of the printed polymer both during printing and the subsequent high-temperature (160 °C) cross-linking. After retrieving the cross-linked part from the gel, the green body is converted to ceramic by high-temperature pyrolysis. This scalable process opens new opportunities for low-cost and high-speed production of complex three-dimensional ceramic parts and will be widely used for high-temperature and corrosive environment applications, including electronics and sensors, microelectromechanical systems, energy, and structural applications. Metal-ceramic composites are technologically significant as structural and functional materials and are among the most expensive materials to manufacture and repair. Hence, technologies for self-healing metal-ceramic composites are important. Here, a concept to fabricate and heal co-continuous metal-ceramic composites at room temperature were demonstrated. The composites were fabricated by infiltration of metal (here Copper) into a porous alumina preform (fabricated by freeze-casting) through electroplating; a low-temperature and low-cost process for the fabrication of such composites. Additionally, the same electroplating process was demonstrated for healing damages such as grooves and cracks in the original composite, such that the healed composite recovered its strength by more than 80%. Such technology may be expanded toward fully autonomous self-healing structures.
ContributorsMahmoudi, Mohammadreza (Author) / Minary-Jolandan, Majid (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Cramer, Corson (Committee member) / Kang, Wonmo (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2022
190956-Thumbnail Image.png
Description
This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron

This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron sputtering, the crystalline nature and B:N stoichiometric ratio of deposited thin films were investigated by X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. Thicknesses revealed by ellipsometry analysis for nearly stoichiometric B:N thin films and their corresponding deposition times were used for estimating BN interlayer deposition times during the deposition of Cu/BN multilayer thin films. To characterize the microstructure of the synthesized Cu/BN multilayer thin films, XRD and scanning electron microscopy (SEM) have been used. Finally, a comparison of nanoindentation measurements on pure Cu and Cu/BN multilayer thin films having different number of BN interlayers were used for studying the influence of BN interlayers on improving mechanical properties such as hardness and elastic modulus. The results show that the stoichiometry of BN thin films is dependent on the Ar/N₂ flow rate during magnetron sputtering. An optimal Ar/N₂ flow rate of 13:5 during deposition was required to achieve an approximately 1:1 B:N stoichiometry. Grazing incidence and powder XRD analysis on these stoichiometric BN thin films deposited at room temperature did not reveal a phase match when compared to hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) reference XRD patterns. For a BN thin film deposition time of 5 hours, a thickness of approximately 40 nm was achieved, as revealed by ellipsometry. XRD and microstructure analysis using scanning electron microscopy (SEM) on pure Cu and Cu/BN thin films showed that the Cu grain size in Cu/BN thin films is much finer than pure Cu thin films. Interestingly, nanoindentation measurements on pure Cu and Cu/BN thin films having a similar overall thickness demonstrated that hardness and Young’s modulus of the films were improved significantly when BN interlayers are present.
ContributorsCaner, Sumeyye (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2023
168311-Thumbnail Image.png
Description
The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement

The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement in the strength of traditional structural materials like Al and Fe based alloys via microstructural refinement. However, the nanocrystalline materials produced using these techniques exhibit poor ductility due to the lack of effective strain hardening mechanisms, and as a result the well-known strength-ductility trade-off persists. To overcome this trade-off, researchers have proposed the concept of heterostructured materials, which are composed of domains ranging in size from a few nanometers to several micrometers. Over the last two decades, there has been intense research on the development of new methods to synthesize heterostructured materials. However, none of these methods is capable of providing precise control over key microstructural parameters such as average grain size, grain morphology, and volume fraction and connectivity of coarse and fine grains. Due to the lack of microstructural control, the relationship between these parameters and the deformation behavior of heterostructured materials cannot be investigated systematically, and hence designing heterostructured materials with optimized properties is currently infeasible. This work aims to address this scientific and technological challenge and is composed of two distinct but interrelated parts. The first part concerns the development of a broadly applicable synthesis method to produce heterostructured metallic films with precisely defined architectures. This method exploits two forms of film growth (epitaxial and Volmer-Weber) to generate heterostructured metallic films. The second part investigates the effect of different microstructural parameters on the deformation behavior of heterostructured metallic films with the aim of elucidating their structure-property relationships. Towards this end, freestanding heterostructured Fe films with different architectures were fabricated and uniaxially deformed using MEMS stages. The results from these experiments are presented and their implications for the mechanical properties of heterostructured materials is discussed.
ContributorsBerlia, Rohit (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Sieradzki, Karl (Committee member) / Peralta, Pedro (Committee member) / Crozier, Peter (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2021
ContributorsMoio, Dom (Director) / Latin Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created2003-04-21
ContributorsMoio, Dom (Director) / Latin Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created2004-11-15
ContributorsPilafian, Sam (Performer) / Malaby, Tony (Performer) / DiBartolo, Joel (Performer) / Moio, Dom (Performer) / Joel DiBartolo Tentet (Performer) / ASU Library. Music Library (Publisher)
Created1995-03-08
ContributorsClayton, John (Performer) / DiBartolo, Joel (Performer) / Clayton, Gerald (Performer) / Kocour, Mike (Performer) / Moio, Dom (Performer) / ASU Library. Music Library (Publisher)
Created2009-03-07
ContributorsPilafian, Sam (Performer) / Marohnic, Chuck (Performer) / Lovelady, Hugh (Performer) / Ruth, Bryon (Performer) / Jones, Warren (Performer) / Moio, Dom (Performer) / Young Sounds of Arizona (Performer) / Arizona Jazz Faculty Nonet (Performer) / ASU Library. Music Library (Publisher)
Created1999-03-08