Matching Items (2)
Description
Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current

Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current building codes would have a significant impact on future energy use, hence, one of the most widely accepted solutions to slowing the growth rate of GHG emissions and then reversing it involves a stringent adoption of building energy codes. A large number of building energy codes exist and a large number of studies which state the energy savings possible through code compliance. However, most codes are difficult to comprehend and require an extensive understanding of the code, the compliance paths, all mandatory and prescriptive requirements as well as the strategy to convert the same to energy model inputs. This paper provides a simplified solution for the entire process by providing an easy to use interface for code compliance and energy simulation through a spreadsheet based tool, the ECCO or the Energy Code COmpliance Tool. This tool provides a platform for a more detailed analysis of building codes as applicable to each and every individual building in each climate zone. It also facilitates quick building energy simulation to determine energy savings achieved through code compliance. This process is highly beneficial not only for code compliance, but also for identifying parameters which can be improved for energy efficiency. Code compliance is simplified through a series of parametric runs which generates the minimally compliant baseline building and 30% beyond code building. This tool is seen as an effective solution for architects and engineers for an initial level analysis as well as for jurisdictions as a front-end diagnostic check for code compliance.  
ContributorsGoel, Supriya (Author) / Bryan, Harvey J. (Thesis advisor) / Reddy, T. Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
155564-Thumbnail Image.png
Description
Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components developed from first principles and empirical data of the heat transfer media. The model is used to (a) size components, (b) examine intraday operational behaviors of the system against varying solar insolation, (c) calculate annual productivity and performance characteristics over a simulated year, and (d) evaluate factors that affect system performance using sensitivity analysis. Time series simulations use hourly direct normal irradiance (DNI) data for Barstow, California, USA. The nominal system design uses a solar multiple of 1.8 with a storage capacity of six hours for off-sun power generation. The mass of particles to achieve six hours of storage weighs 5,140 metric tonnes. Capacity factor increases by 3.55% for an increase in storage capacity to eight hours which requires an increase in storage volume by 33% or 737 m3, or plant design can be improved by decreasing solar multiple to 1.6 to increase the ratio of annual capacity factor to solar multiple. The solar reduction receiver is the focal point for the concentrated solar energy for inducing an endothermic reaction in the particles under low partial pressure of oxygen, and the reoxidation reactor induces the opposite exothermic reaction by mixing the particles with air to power an air Brayton engine. Stream flow data indicate the solar receiver experiences the largest thermal loss of any component, excluding the solar field. Design and sensitivity analysis of thermal insulation layers for the solar receiver show that additional RSLE-57 insulation material achieves the greatest increase in energetic efficiency of the five materials investigated.
ContributorsGorman, Brandon Tom (Author) / Johnson, Nathan G (Thesis advisor) / Stechel, Ellen B (Committee member) / Chester, Mikhail V (Committee member) / Arizona State University (Publisher)
Created2017