Matching Items (507)
Filtering by

Clear all filters

154349-Thumbnail Image.png
Description
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers - machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
ContributorsKamyar, Reza (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Artemiadis, Panagiotis (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2016
154206-Thumbnail Image.png
Description
Gas turbine efficiency has improved over the years due to increases in compressor

pressure ratio and turbine entry temperature (TET) of main combustion gas, made viable

through advancements in material science and cooling techniques. Ingestion of main

combustion gas into the turbine rotor-stator disk cavities can cause major damage to the

gas turbine. To

Gas turbine efficiency has improved over the years due to increases in compressor

pressure ratio and turbine entry temperature (TET) of main combustion gas, made viable

through advancements in material science and cooling techniques. Ingestion of main

combustion gas into the turbine rotor-stator disk cavities can cause major damage to the

gas turbine. To counter this ingestion, rim seals are installed at the periphery of turbine

disks, and purge air extracted from the compressor discharge is supplied to the disk

cavities. Optimum usage of purge air is essential as purge air extraction imparts a penalty on turbine efficiency and specific fuel consumption.

In the present work, experiments were conducted in a newly constructed 1.5-stage

axial flow air turbine featuring vanes and blades to study main gas ingestion. The disk

cavity upstream of the rotor, the 'front cavity', features a double seal with radial clearance

and axial overlap at its rim. The disk cavity downstream of the rotor, the 'aft cavity', features a double seal at its rim but with axial gap. Both cavities contain a labyrinth seal radially inboard; this divides each disk cavity into an 'inner cavity' and a 'rim cavity'.

Time-averaged static pressure at various locations in the main gas path and disk

cavities, and tracer gas (CO2) concentration at different locations in the cavities were

measured. Three sets of experiments were carried out; each set is defined by the main air flow rate and rotor speed. Each of the three sets comprises of four different purge air flow rates, low to high.

The mass flow rate of ingested main gas into the front and aft rim cavities is

reported at the different purge air flow rates, for the three experiment sets. For the present stage configuration, it appears that some ingestion persisted into both the front and aft rim cavities even at high purge air flow rates. On the other hand, the front and aft inner cavity were completely sealed at all purge flows.
ContributorsMichael, Mukilan Sebastiraj (Author) / Roy, Ramendra P (Thesis advisor) / Mignolet, Marc P (Thesis advisor) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2015
154214-Thumbnail Image.png
Description
Contact angle goniometer is one of the most common tools in surfaces science. Since the introduction of this instrument by Fox and Zisman1 in 1950, dispensing the liquid using a syringe has generated pendant drops. However, using such approach at conditions significantly deviating from standard pressure and temperature would

Contact angle goniometer is one of the most common tools in surfaces science. Since the introduction of this instrument by Fox and Zisman1 in 1950, dispensing the liquid using a syringe has generated pendant drops. However, using such approach at conditions significantly deviating from standard pressure and temperature would require an elaborate and costly fluidic system. To this end, this thesis work introduces alternative design of a goniometer capable of contact angle measurement at wide pressure and temperature range. In this design, pendant droplets are not dispensed through a pipette but are generated through localized condensation on a tip of a preferentially cooled small metal wire encapsulated within a thick thermal insulator layer. This thesis work covers experimental study of the relation between the geometry of the condensation-based pendant drop generator geometry and subcooling, and growth rate of drops of representative high (water) and low (pentane) surface tension liquids. Several routes that the generated pendant drops can be used to measure static and dynamic contact angles of the two liquids on common substrates well as nanoengineered superhydrophobic and omniphobic surfaces are demonstrated.
ContributorsMohan, Ajay Roopesh (Author) / Rykaczewski, Konrad (Thesis advisor) / Herrmann, Marcus (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2015
154230-Thumbnail Image.png
Description
CubeSats offer a compelling pathway towards lowering the cost of interplanetary exploration missions thanks to their low mass and volume. This has been possible due to miniaturization of electronics and sensors and increased efficiency of photovoltaics. Interplanetary communication using radio signals requires large parabolic antennas on the spacecraft and

CubeSats offer a compelling pathway towards lowering the cost of interplanetary exploration missions thanks to their low mass and volume. This has been possible due to miniaturization of electronics and sensors and increased efficiency of photovoltaics. Interplanetary communication using radio signals requires large parabolic antennas on the spacecraft and this often exceeds the total volume of CubeSat spacecraft. Mechanical deployable antennas have been proposed that would unfurl to form a large parabolic dish. These antennas much like an umbrella has many mechanical moving parts, are complex and are prone to jamming. An alternative are inflatables, due to their tenfold savings in mass, large surface area and very high packing efficiency of 20:1. The present work describes the process of designing and building inflatable parabolic reflectors for small satellite radio communications in the X band.

Tests show these inflatable reflectors to provide significantly higher gain characteristics as compared to conventional antennas. This would lead to much higher data rates from low earth orbits and would provide enabling communication capabilities for small satellites in deeper space. This technology is critical to lowering costs of small satellites while enhancing their capabilities.

Principle design challenges with inflatable membranes are maintaining accurate desired shape, reliable deployment mechanism and outer space environment protection. The present work tackles each of the mentioned challenges and provides an



understanding towards future work. In the course of our experimentation we have been able to address these challenges using building techniques that evolved out of a matured understanding of the inflation process.

Our design is based on low cost chemical sublimates as inflation substances that use a simple mechanism for inflation. To improve the reliability of the inflated shape, we use UV radiation hardened polymer support structures. The novelty of the design lies in its simplicity, low cost and high reliability. The design and development work provides an understanding towards extending these concepts to much larger deployable structures such as solar sails, inflatable truss structures for orbit servicing and large surface area inflatables for deceleration from hypersonic speeds when re-entering the atmosphere.
ContributorsChandra, Aman (Author) / Thangavelautham, Jekanthan (Thesis advisor) / Huang, Huei Ping (Thesis advisor) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2015
157692-Thumbnail Image.png
Description
Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing

Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing in fabricating polymer heat exchangers and estimate their effectiveness as a heat transfer device. Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and Stereolithography (SLA) are the three 3-d printing techniques that are explored for their feasibility in manufacturing heat exchangers. The research also explores a triply periodic minimal structure–the gyroid, as a heat exchanger design. The performance of the gyroid heat exchanger was studied using experiments. The main parameters considered for the experiments were heat transfer rate, effectiveness and pressure drop. From the results obtained it can be inferred that using polymers in heat exchangers helps reducing corrosion and fouling problems, but it affects the effectiveness of the heat exchangers. For our design, the maximum effectiveness achieved was 0.1. The pressure drop for the heat exchanger was observed to decrease with an increase in flow rate and the maximum pressure drop measured was 0.88 psi for a flow rate of 5 LPM.
ContributorsDanayat, Swapneel Shailesh (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Azeredo, Bruno (Committee member) / Arizona State University (Publisher)
Created2019
157693-Thumbnail Image.png
Description
Near-field thermal radiation occurs when the distance between two surfaces at different temperatures is less than the characteristic wavelength of thermal radiation. While theoretical studies predict that the near-field radiative heat transfer could exceed Planck’s blackbody limit in the far-field by orders of magnitudes depending on the materials and ga

Near-field thermal radiation occurs when the distance between two surfaces at different temperatures is less than the characteristic wavelength of thermal radiation. While theoretical studies predict that the near-field radiative heat transfer could exceed Planck’s blackbody limit in the far-field by orders of magnitudes depending on the materials and gap distance, experimental measurement of super-Planckian near-field radiative heat flux is extremely challenging in particular at sub-100-nm vacuum gaps and few has been demonstrated. The objective of this thesis is to develop a novel thermal metrology based on AFM bi-material cantilever and experimentally measure near-field thermal radiation.

The experiment setup is completed and validated by measuring the near-field radiative heat transfer between a silica microsphere and a silica substrate and comparing with theoretical calculations. The bi-material AFM cantilever made of SiNi and Au bends with temperature changes, whose deflection is monitored by the position-sensitive diode. After careful calibration, the bi-material cantilever works as a thermal sensor, from which the near-field radiative conductance and tip temperature can be deduced when the silica substrate approaches the silica sphere attached to the cantilever by a piezo stage with a resolution of 1 nm from a few micrometers away till physical contact. The developed novel near-field thermal metrology will be used to measure the near-field radiative heat transfer between the silica microsphere and planar SiC surface as well as nanostructured SiC metasurface. This research aims to enhance the fundamental understandings of radiative heat transfer in the near-field which could lead to advances in microelectronics, optical data storage and thermal systems for energy conversion and thermal management.
ContributorsKondakindi, Ramteja Reddy (Author) / Wang, Liping (Thesis advisor) / Kwon, Beomjin (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2019
157667-Thumbnail Image.png
Description
In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.
ContributorsPrabhu, Saurabh (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157679-Thumbnail Image.png
Description
Non-Destructive Testing (NDT) is a branch of scientific methods and techniques

used to evaluate the defects and irregularities in engineering materials. These methods

conduct testing without destroying or altering material’s structure and functionality. Most

of these defects are subsurface making them difficult to detect and access.

SONIC INFRARED (IR) is a relatively new and

Non-Destructive Testing (NDT) is a branch of scientific methods and techniques

used to evaluate the defects and irregularities in engineering materials. These methods

conduct testing without destroying or altering material’s structure and functionality. Most

of these defects are subsurface making them difficult to detect and access.

SONIC INFRARED (IR) is a relatively new and emerging vibrothermography

method under the category of NDT methods. This is a fast NDT inspection method that

uses an ultrasonic generator to pass an ultrasonic pulse through the test specimen which

results in a temperature variation in the test specimen. The temperature increase around

the area of the defect is more because of frictional heating due to the vibration of the

specimen. This temperature variation can be observed using a thermal camera.

In this research study, the temperature variation in the composite laminate during

the SONIC IR experimentation using an infrared thermal camera. These recorded data are

used to determine the location, dimension and depth of defects through SONIC IR NDT

method using existing defect detection algorithms. Probability of detection analysis is

used to determine the probability of detection under specific experimental conditions for

two different types of composite laminates. Lastly, the effect of the process parameters

such as number of pulses, pulse duration and time delay between pulses of this technique

on the detectability and probability of detection is studied in detail.
ContributorsDarnal, Aryabhat (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157713-Thumbnail Image.png
Description
Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum.

Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum. An economic method is always desired to fabricate spectrally selective surfaces with improved energy conversion efficiency. Colloidal lithography is a recently emerged way of nanofabrication, which has advantages of low-cost and easy operation.

In this thesis, aluminum metasurface structures are proposed based on colloidal lithography method. High Frequency Structure Simulator is used to numerically study optical properties and design the aluminum metasurfaces with selective absorption. Simulation results show that proposed aluminum metasurface structure on aluminum oxide thin film and aluminum substrate has a major reflectance dip, whose wavelength is tunable within the near-infrared and visible spectrum with metasurface size. As the metasurface is opaque due to aluminum film, it indicates strong wavelength-selective optical absorption, which is due to the magnetic resonance between the top metasurface and bottom Al film within the aluminum oxide layer.

The proposed sample is fabricated based on colloidal lithography method. Monolayer polystyrene particles of 500 nm are successfully prepared and transferred onto silicon substrate. Scanning electron microscope is used to check the surface topography. Aluminum thin film with 20-nm or 50-nm thickness is then deposited on the sample. After monolayer particles are removed, optical properties of samples are measured by micro-scale optical reflectance and transmittance microscope. Measured and simulated reflectance of these samples do not have frequency selective properties and is not sensitive to defects. The next step is to fabricate the Al metasurface on Al_2 O_3 and Al films to experimentally demonstrate the selective absorption predicted from the numerical simulation.
ContributorsGuan, Chuyun (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157722-Thumbnail Image.png
Description
With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals

With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals or ceramics), and exhibit very high strength, wear resistance and radiation tolerance. This thesis is focused on the fabrication and mechanical characterization of nanolaminates composed of Copper and Cobalt, two metals which are nearly immiscible across the entire composition range. The synthesis of these Cu-Co nanolaminates is performed using sputtering, a well-known and technologically relevant physical vapor deposition process. X-ray diffraction is used to characterize the microstructure of the nanolaminates. Cu-Co nanolaminates with different layer thicknesses are tested using microelectromechanical systems (MEMS) based tensile testing devices fabricated using photolithography and etching processes. The stress-strain behavior of nanolaminates with varying layer thicknesses are analysed and correlated to their microstructure.
ContributorsRajarajan, Santhosh Kiran (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2019