Matching Items (4)
Filtering by

Clear all filters

153411-Thumbnail Image.png
Description
Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces are described.
ContributorsLiu, Shanliangzi (Author) / Rykaczewski, Konrad (Thesis advisor) / Alford, Terry (Committee member) / Herrmann, Marcus (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2015
149604-Thumbnail Image.png
Description
Programmable Metallization Cell (PMC) is a resistance-switching device based on migration of nanoscale quantities of cations in a solid electrolyte and formation of a conducting electrodeposit by the reductions of these cations. This dissertation presents electrical characterization results on Cu-SiO2 based PMC devices, which due to the na- ture of

Programmable Metallization Cell (PMC) is a resistance-switching device based on migration of nanoscale quantities of cations in a solid electrolyte and formation of a conducting electrodeposit by the reductions of these cations. This dissertation presents electrical characterization results on Cu-SiO2 based PMC devices, which due to the na- ture of materials can be easily integrated into the current Complimentary metal oxide semiconductor (CMOS) process line. Device structures representing individual mem- ory cells based on W bottom electrode and n-type Si bottom electrode were fabricated for characterization. For the W bottom electrode based devices, switching was ob- served for voltages in the range of 500mV and current value as low as 100 nA showing the electrochemical nature and low power potential. The ON state showed a direct de- pendence on the programming current, showing the possibility of multi-bit storage in a single cell. Room temperature retention was demonstrated in excess of 105 seconds and endurance to approximately 107 cycles. Switching was observed for microsecond duration 3 V amplitude pulses. Material characterization results from Raman, X-ray diffraction, Rutherford backscattering and Secondary-ion mass spectroscopy analysis shows the influence of processing conditions on the Cu concentration within the film and also the presence of Cu as free atoms. The results seemed to indicate stress-induced void formation in the SiO2 matrix as the driving mechanism for Cu diffusion into the SiO2 film. Cu/SiO2
Si based PMC devices were characterized and were shown to have inherent isolation characteristics, proving the feasibility of such a structure for a passive array. The inherent isolation property simplifies fabrication by avoiding the need for a separate diode element in an array. The isolation characteristics were studied mainly in terms of the leakage current. The nature of the diode interface was further studied by extracting a barrier potential which shows it can be approximated to a Cu-nSi metal semiconductor Schottky diode.
ContributorsPuthenthermadam, Sarath (Author) / Kozicki, Michael N (Thesis advisor) / Diaz, Rodolfo (Committee member) / Schroder, Dieter K. (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2011
157774-Thumbnail Image.png
Description
Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several

Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several techniques have been explored to access the deflection and stress status on solar cell, but they have disadvantages such as high surface sensitivity.

This dissertation presents a new and non-destructive method for mapping the deflection on encapsulated solar cells using X-ray topography (XRT). This method is based on Bragg diffraction imaging, where only the areas that meet diffraction conditions will present contrast. By taking XRT images of the solar cell at various sample positions and applying an in-house developed algorithm framework, the cell‘s deflection map is obtained. Error analysis has demonstrated that the errors from the experiment and the data processing are below 4.4 and 3.3%.

Von Karman plate theory has been applied to access the stress state of the solar cells. Under the assumptions that the samples experience pure bending and plain stress conditions, the principal stresses are obtained from the cell deflection data. Results from a statistical analysis using a Weibull distribution suggest that 0.1% of the data points can contribute to critical failure. Both the soldering and lamination processes put large amounts of stress on solar cells. Even though glass/glass packaging symmetry is preferred over glass/backsheet, the solar cells inside the glass/glass packaging experience significantly more stress. Through a series of in-situ four-point bending test, the assumptions behind Von Karman theory are validated for cases where the neutral plane is displaced by the tensile and compressive stresses.

The deflection and stress mapping method is applied to two next generation PV concepts named Flex-circuit and PVMirror. The Flex-circuit module concept replaces traditional metal ribbons with Al foils for electrical contact and PVMirror concept utilizes a curved PV module design with a dichroic film for thermal storage and electrical output. The XRT framework proposed in this dissertation successfully characterized the impact of various novel interconnection and packaging solutions.
ContributorsMeng, Xiaodong (Author) / Bertoni, Marian I (Thesis advisor) / Meier, Rico (Committee member) / Holman, Zachary C (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2019
161480-Thumbnail Image.png
Description
Nanoholes on the basal plane of graphene can provide abundant mass transport channels and chemically active sites for enhancing the electrochemical performance, making this material highly promising in applications such as supercapacitors, batteries, desalination, molecule or ion detection, and biosensing. However, the current solution-based chemical etching processes to manufacture these

Nanoholes on the basal plane of graphene can provide abundant mass transport channels and chemically active sites for enhancing the electrochemical performance, making this material highly promising in applications such as supercapacitors, batteries, desalination, molecule or ion detection, and biosensing. However, the current solution-based chemical etching processes to manufacture these nanoholes commonly suffer from low process efficiency, scalability, and controllability, because conventional bulk heating cannot promote the etching reactions. Herein, a novel manufacturing method is developed to address this issue using microwave irradiation to facilitate and control the chemical etching of graphene. In this process, microwave irradiation induces selective heating of graphene in the aqueous solution due to an energy dissipation mechanism coupled with the dielectric and conduction losses. This strategy brings a remarkable reduction of processing time from hour-scale to minute-scale compared to the conventional approaches. By further incorporating microwave pretreatment, it is possible to control the population and area percentage of the in-plane nanoholes on graphene. Theoretical calculations reveal that the nanoholes emerge and grow by a repeating reduction–oxidation process occurring at the edge-sites atoms around vacancy defects on the graphene basal plane. The reduced holey graphene oxide sheets obtained via the microwave-assisted chemical etching method exhibit great potentials in supercapacitors and electrocatalysis. Excellent capacitive performance and electrocatalytic activity are observed in electrochemical measurements. The improvements against the non-holey counterpart are attributed to the enhanced kinetics involving ion diffusion and heterogeneous charge transfer.
ContributorsWang, Dini (Author) / Nian, Qiong (Thesis advisor) / Alford, Terry (Committee member) / Wang, Qing Hua (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021