Matching Items (42)
Filtering by

Clear all filters

158307-Thumbnail Image.png
Description
The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear

The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear Reduced Order Modeling (NLROM) methodology, basis selection and/or identification methodology, to obtain reliable reduced order models of these structures. Focusing on these goals, the work carried out addressed more specifically the following issues:

i) optimization of the basis to capture at best the response in the smallest number of modes,

ii) improved identification of the reduced order model stiffness coefficients,

iii) detection of strongly nonlinear events using NLROM.

For the first issue, an approach was proposed to rotate a limited number of linear modes to become more dominant in the response of the structure. This step was achieved through a proper orthogonal decomposition of the projection on these linear modes of a series of representative nonlinear displacements. This rotation does not expand the modal space but renders that part of the basis more efficient, the identification of stiffness coefficients more reliable, and the selection of dual modes more compact. In fact, a separate approach was also proposed for an independent optimization of the duals. Regarding the second issue, two tuning approaches of the stiffness coefficients were proposed to improve the identification of a limited set of critical coefficients based on independent response data of the structure. Both approaches led to a significant improvement of the static prediction for the clamped-clamped curved beam model. Extensive validations of the NLROMs based on the above novel approaches was carried out by comparisons with full finite element response data. The third issue, the detection of nonlinear events, was finally addressed by building connections between the eigenvalues of the finite element software (Nastran here) and NLROM tangent stiffness matrices and the occurrence of the ‘events’ which is further extended to the assessment of the accuracy with which the NLROM captures the full finite element behavior after the event has occurred.
ContributorsLin, Jinshan (Author) / Mignolet, Marc (Thesis advisor) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Spottswood, Stephen (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2020
161845-Thumbnail Image.png
Description
The hexagonal honeycomb is a bio-inspired cellular structure with a high stiffness-to-weight ratio. It has contributed to its use in several engineering applications compared to solid bodies with identical volume and material properties. This characteristic behavior is mainly attributed to the effective nature of stress distribution through the honeycomb beams

The hexagonal honeycomb is a bio-inspired cellular structure with a high stiffness-to-weight ratio. It has contributed to its use in several engineering applications compared to solid bodies with identical volume and material properties. This characteristic behavior is mainly attributed to the effective nature of stress distribution through the honeycomb beams that manifests as bending, axial, and shear deformation mechanisms. Inspired by the presence of this feature in natural honeycomb, this work focuses on the influence of the corner radius on the mechanical properties of a honeycomb structure subjected to in-plane compression loading. First, the local response at the corner node interface is investigated with the help of finite element simulation of a periodic unit cell within the linear elastic domain and validated against the best available analytical models. Next, a parametric design of experiments (DOE) study with the unit cell is defined with design points of varying circularity and cell length ratios towards identifying the optimal combination of all geometric parameters that maximize stiffness per unit mass while minimizing the stresses induced at the corner nodes. The observed trends are then compared with compression tests of 3D printed Nylon 12 honeycomb specimens of varying corner radii and wall thicknesses. The study concluded that the presence of a corner radius has a mitigating effect on peak stresses but that these effects are dependent on thickness while also increasing specific stiffness in all cases. It also points towards an optimum combination of parameters that achieve both objectives simultaneously while shedding some light on the functional benefit of this radius in wasp and bee nests that employ a hexagonal cell.
ContributorsRajeev, Athul (Author) / Bhate, Dhruv (Thesis advisor) / Oswald, Jay (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021