Matching Items (73)
Filtering by

Clear all filters

135315-Thumbnail Image.png
Description
The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched

The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched in order to visualize and characterize the microstructure and its features. The samples then undergo strain-controlled fatigue tests for several thousand cycles. Throughout testing, images of the samples are taken at zero and maximum load for DIC analysis. The DIC results can be used to study the local strains of the samples. The DIC analysis performed on the CP-Ti sample and presented in this study will be used to understand how the addition of oxygen in the Ti-O impacts fatigue response. The outcome of this research can be used to develop long-lasting, high strength materials.
ContributorsRiley, Erin Ashland (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / School of Art (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171750-Thumbnail Image.png
Description
An approach for modeling resistance spot welding of thin-gauge, dissimilar metal sheets with high electrical conductivity is presented in this work. In this scenario, the electrical and thermal contact resistances play a dominant role in heat generation and temperature evolution within the workpieces; these interactions ultimately control the weld geometry.

An approach for modeling resistance spot welding of thin-gauge, dissimilar metal sheets with high electrical conductivity is presented in this work. In this scenario, the electrical and thermal contact resistances play a dominant role in heat generation and temperature evolution within the workpieces; these interactions ultimately control the weld geometry. Existing models are limited in modeling these interactions, especially for dissimilar and thin-gauge metal sheets, and at higher temperatures when the multiphysics becomes increasingly interdependent. The approach presented here uses resistivity measurements, combined with thermal modeling and known bulk resistance relationships to infer the relationship between electrical contact resistance and temperature for each of the different material interfaces in the welding process. Corresponding thermal contact resistance models are developed using the Wiedemann-Franz law combined with a scaling factor to account for nonmetallic behavior. Experimental and simulation voltage histories and final weld diameter were used to validate this model for a Cu/Al/Cu and a Cu/Al/Cu/Al/Cu stack-ups. This model was then used to study the effect of Ni-P coating on resistance spot welding of Cu and Al sheets in terms of weld formation, mechanical deformation, and contact resistance. Contact resistance and current density distribution are highly dependent on contact pressure and temperature distribution at the Cu/Al interface in the presence of alumina. The Ni-P coating helps evolve a partially-bonded donut shaped weld into a fully-bonded hourglass-shaped weld by decreasing the dependence of contact resistance and current density distribution on contact pressure and temperature distribution at the Cu/Al interface. This work also provides an approach to minimize distortion due to offset-rolling in thin aluminum sheets by optimizing the stiffening feature geometry. The distortion is minimized using particle swarm optimization. The objective function is a function of distortion and smallest radius of curvature in the geometry. Doubling the minimum allowable radius of curvature nearly doubles the reduction in distortion from the stadium shape for a quarter model. Reduction in distortion in the quarter model extends to the full-scale model with the best design performing 5.3% and 27% better than the corresponding nominal design for a quarter and full-scale model, respectively.
ContributorsVeeresh, Pawan (Author) / Oswald, Jay (Thesis advisor) / Carlson, Blair (Committee member) / Hoover, Christian (Committee member) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
187566-Thumbnail Image.png
Description
This research aims to develop a single-phase immersion cooling system for CPU (Central Processing Unit) processors. To achieve this, a heat pipe with a dielectric liquid is designed to be used to cool the CPU, relying only on natural convection. A Tesla valve phenomenon is used to achieve the one-directional,

This research aims to develop a single-phase immersion cooling system for CPU (Central Processing Unit) processors. To achieve this, a heat pipe with a dielectric liquid is designed to be used to cool the CPU, relying only on natural convection. A Tesla valve phenomenon is used to achieve the one-directional, recirculating system. A comparative study was conducted between two different single-phase dielectric fluids Mineral Oil and FC 3283 (Fluorocarbon), utilizing natural convection and Boussinesq correlations. ANSYS Fluent was used to conduct CFD (Computational Fluid Dynamics) analysis, demonstrating natural convection and recirculating flow in the heating direction. A comparison was made between the traditional cooling method of air and the developed immersion cooling system, with the results indicating that the system is capable of reducing the operating temperature of the CPU by 40 to 50 degrees Celsius, depending on the power consumption. The results of the experiment conducted showed that a processor cooled by Mineral oil would operate at 56 degrees Celsius, while a processor cooled by FC 3283 would operate at 47 degrees Celsius. By comparison, a processor cooled by the traditional air-cooled system would operate between 80 and 100 degrees Celsius. These results demonstrate that the Mineral oil and FC 3283 cooling systems are significantly more efficient than the traditional air-cooled system. This could prove to be a valuable asset in the development of more efficient cooling systems. Further research is necessary to evaluate the longevity, cost-effectiveness, and benefits of these systems in comparison to traditional air cooling
ContributorsGajjar, Kathan Malaybhai (Author) / Huang, Huei Ping (Thesis advisor) / Chen, Kangping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2023
171947-Thumbnail Image.png
Description
Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous

Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous aromatic polymers to extreme conditions, there is little experimental work to validate these models 1) at the atomic-scale and 2) under high pressures characteristic of extreme dynamic loading. Understanding structure-property relationships at the atomic-level is important for polymers, considering many of them undergo pressure and temperature-induced structural transformations, which must be understood to formulate accurate predictive models. This work aims to gain a deeper understanding of the high-pressure structural response of aromatic polymers at the atomic-level, with emphasis into the mechanisms associated with high-pressure transformations. Hence, atomic-level structural data at high pressures was obtained in situ via multiangle energy dispersive X-ray diffraction (EDXD) experiments at the Advanced Photon Source (APS) for polyurea and another amorphous aromatic polymer, polysulfone, chosen as a reference due to its relatively simple structure. Pressures up to 6 GPa were applied using a Paris Edinburgh (PE) hydraulic press at room temperature. Select polyurea samples were also heated to 277 °C at 6 GPa. The resulting structure factors and pair distribution functions, along with molecular dynamics simulations of polyurea provided by collaborators, suggest that the structures of both polymers are stable up to 6 GPa, aside from reductions in free-volume between polymer backbones. As higher pressures (≲ 32 GPa) were applied using diamond anvils in combination with the PE press, indications of structural transformations were observed in both polymers that appear similar in nature to the sp2-sp3 hybridization in compressed carbon. The transformation occurs gradually up to at least ~ 26 GPa in PSF, while it does not progress past ~ 15 GPa in polyurea. The changes are largely reversible, especially in polysulfone, consistent with pressure-driven, reversible graphite-diamond transformations in the absence of applied temperature. These results constitute some of the first in situ observations of the mechanisms that drive pressure-induced structural transformations in aromatic polymers.
ContributorsEastmond, Tyler (Author) / Peralta, Pedro (Thesis advisor) / Hoover, Christian (Committee member) / Hrubiak, Rostislav (Committee member) / Mignolet, Marc (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsGarcia, Andres (Author) / Parekh, Mohan (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsParekh, Mohan (Author) / Garcia, Andres (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
168428-Thumbnail Image.png
Description
Over the past few decades there has been significant interest in the design and construction of hypersonic vehicles. Such vehicles exhibit strongly coupled aerodynamics, acoustics, heat transfer, and structural deformations, which can take significant computational efforts to simulate using standard finite element and computational fluid dynamics techniques. This situation has

Over the past few decades there has been significant interest in the design and construction of hypersonic vehicles. Such vehicles exhibit strongly coupled aerodynamics, acoustics, heat transfer, and structural deformations, which can take significant computational efforts to simulate using standard finite element and computational fluid dynamics techniques. This situation has lead to development of various reduced order modelling (ROM) methods which reduce the parameter space of these simulations so they can be run more quickly. The planned hypersonic vehicles will be constructed by assembling a series of sub-structures, such as panels and stiffeners, that will be welded together creating built-up structures.In this light, the focus of the present investigation is on the formulation and validation of nonlinear reduced order models (NLROMs) of built-up structures that include nonlinear geometric effects induced by the large loads/large response. Moreover, it is recognized that gaps between sub-structures could result from the these intense loadings can thus the inclusion of the nonlinearity introduced by contact separation will also be addressed. These efforts, application to built-up structures and inclusion of contact nonlinearity, represent novel developments of existing NLROM strategies. A hat stiffened panel is selected as a representative example of built-up structure and a compact NRLOM is successfully constructed for this structure which exhibited a potential internal resonance. For the investigation of contact nonlinearity, two structural models were used: a cantilevered beam which can contact several stops and an overlapping plate model which can exhibit the opening/closing of a gap. Successful NLROMs were constructed for these structures with the basis for the plate model determined as a two-step process, i.e., considering the plate without gap first and then enriching the corresponding basis to account for opening of the gap. Adaptions were then successfully made to a Newton-Raphson solver to properly account for contact and the associated forces in static predictions by NLROMs.
ContributorsWainwright, Bret Aaron (Author) / Mignolet, Marc P (Thesis advisor) / Oswald, Jay (Committee member) / Peralta, Pedro (Committee member) / Spottswood, Stephen (Committee member) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2021
168292-Thumbnail Image.png
Description
In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance

In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance into the ambient air. To investigate the wicking process, a two-dimensional multiphase flow numerical model using COMSOL Multiphysics is built. Saturation and liquid pressure inside the pad are solved. Comparison between the simulation results and experiments shows that evaporation occurs simultaneously with the wicking process. The evaporation performance on the surface of the wicking pad is analyzed based on the kinetic theory, from which the mass flow rate of molecules passing the interface of each pore of the porous medium is obtained. A 3D model coupling the evaporation model and dynamic wicking on the evaporation pad is built to simulate the entire performance of the air freshener to the environment for a long period of time. Diffusion and natural convection effects are included in the simulation. The simulation results match well with the experiments for both the air fresheners placed in a chamber and in the absent of a chamber, the latter of which is subject to indoor airflow. The gel-based air freshener can be constructed as a porous medium in which the solid network of particles spans the volume of the fragrance liquid. To predict the evaporation performance of the gel, two approaches are tested for gel samples in hemispheric shape. The first approach is the sessile drop model commonly used for the drying process of a pure liquid droplet. It can be used to estimate the weight loss rate and time duration of the evaporation. Another approach is to simulate the concentration profile outside the gel and estimate the evaporation rate from the surface of the gel using the kinetic theory. The evaporation area is updated based on the change of pore size. A 3D simulation using the same analysis is further applied to the cylindrical gel sample. The simulation results match the experimental data well.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
156800-Thumbnail Image.png
Description
Owing to the surge in development of endovascular devices such as coils and flow diverter stents, doctors are inclined to approach surgical cases non-invasively more often than before. Treating brain aneurysms as a bulging of a weakened area of a blood vessel is no exception. Therefore, promoting techniques that can

Owing to the surge in development of endovascular devices such as coils and flow diverter stents, doctors are inclined to approach surgical cases non-invasively more often than before. Treating brain aneurysms as a bulging of a weakened area of a blood vessel is no exception. Therefore, promoting techniques that can help surgeons have a better idea of treatment outcomes are of invaluable importance.

In order to investigate the effects of these devices on intra-aneurysmal hemodynamics, the conventional computational fluid dynamics (CFD) approach uses the explicit geometry of the device within an aneurysm and discretizes the fluid domain to solve the Navier-Stokes equations. However, since the devices are made of small struts, the number of mesh elements in the boundary layer region would be considerable. This cumbersome task led to the implementation of the porous medium assumption. In this approach, the explicit geometry of the device is eliminated, and relevant porous medium assumptions are applied. Unfortunately, as it will be shown in this research, some of the porous medium approaches used in the literature are over-simplified. For example, considering the porous domain to be homogeneous is one major drawback which leads to significant errors in capturing the intra-aneurysmal flow features. Specifically, since the devices must comply with the complex geometry of an aneurysm, the homogeneity assumption is not valid.

In this research, a novel heterogeneous porous medium approach is introduced. This results in a substantial reduction in the total number of mesh elements required to discretize the flow domain while not sacrificing the accuracy of the method by over-simplifying the utilized assumptions.
ContributorsYadollahi Farsani, Hooman (Author) / Herrmann, Marcus (Thesis advisor) / Frakes, David (Thesis advisor) / Chong, Brian (Committee member) / Peet, Yulia (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2018