Matching Items (63)
Filtering by

Clear all filters

154538-Thumbnail Image.png
Description
Origami and Kirigami are two traditional art forms in the world. Origami, from

‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper folding. In this dissertation, Origami and kirigami concepts were

Origami and Kirigami are two traditional art forms in the world. Origami, from

‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper folding. In this dissertation, Origami and kirigami concepts were successively utilized in making stretchable lithium ion batteries and three-dimensional (3D) silicon structure which both provide excellent mechanical characteristics.
ContributorsSong, Zeming (Author) / Jiang, Hanqing (Thesis advisor) / Dai, Lenore (Committee member) / Yu, Hongbin (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Dai, Lenore (Committee member) / Kozicki, Michael (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
155121-Thumbnail Image.png
Description
Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments.

In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical

Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments.

In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code.

Combining the distribution of microscopic impact loads and finite element modeling, a semi-quantitative predictive framework is created to calculate the energy dissipation within the coating which can further the understanding of temperature induced coating failures.

The influence of coating thickness and elastomer rheology on the dissipation of impact energies experienced in cavitating flows has also been explored.

The logarithmic formulation has many desired features for the polyurea constitutive model, such as objectivity, integrability, and additive decomposition compatibility.

A review and discussion on the kinematics in large deformation, including a comparison between Lagrangian and Eulerian descriptions, are presented to explain the issues in building rate-dependent constitutive models in finite strains.

When comparing the logarithmic rate with other conventional rates in test examples, the logarithmic rate shows a better conservation of objectivity and integrability.

The modeling framework was validated by comparing predictions against temperatures measured within coatings subjected to a cavitating jet.

Both the experiments and models show that the temperatures generated, even under mild flow conditions, raise the coating temperature by a significant amount, suggesting that the failure of these coatings under more aggressive flows is thermally induced.

The models show that thin polyurea coatings synthesized with shorter molecular weight soft segments dissipate significantly less energy per impact and conduct heat more efficiently.

This work represents an important step toward understanding thermally induced failure in elastomers subjected to cavitating flows, which provides a foundation for design and optimization of coatings with enhanced erosion resistance.
ContributorsLiao, Xiao (Author) / Oswald, Jay (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Rajan, Subramaniam D. (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2016
154971-Thumbnail Image.png
Description
A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack

A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack opening stress every cycle, in a simplified manner. One of the significant phenomena of the crack opening stress under negative stress ratio is the residual tensile stress induced by the applied compressive stress. A modified coefficient is introduced to determine the extent to which residual stress impact the crack closure and is observed to vary for different materials. Several other literature models for crack closure under constant loading are also reviewed and compared with the proposed model. The modified model is then shown to predict several sets of published test results under constant loading for a variety of materials.

The crack opening stress is formalized as a function of the plastic zone sizes at the crack tip and the current crack length, which provided a means of approximation, accounting for both acceleration and retardation effects in a simplified manner. A sensitivity parameter is introduced to modify the enlarged plastic zone due to overload, to better fit the delay cycles with the test data and is observed to vary for different materials. Furthermore, the interaction effect induced by the combination of overload and underload sequence is modeled by depleting the compressive plastic zone due to an overload with the tensile plastic zone due to an underload. A qualitative analysis showed the simulation capacity of the small time scale model under different load types. A good agreement between prediction and test data for several irregular load types proved the applicability of the small time scale model under variable amplitude loading.
ContributorsVenkatesan, Karthik Rajan (Author) / Liu, Yongming (Thesis advisor) / Oswald, Jay (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
154985-Thumbnail Image.png
Description
There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during model validation where the total error between physical observation and model prediction must be characterized. It is necessary to quantify the effects of uncertainties at every length scale in order to fully understand their impact on the structural response. Material variability may include variations in fiber volume fraction, fiber dimensions, fiber waviness, pure resin pockets, and void distributions. Therefore, a stochastic modeling framework with scale dependent constitutive laws and an appropriate failure theory is required to simulate the behavior and failure of polymer matrix composite structures subjected to complex loadings. Additionally, the variations in environmental conditions for aerospace applications and the effect of these conditions on the polymer matrix composite material need to be considered. The research presented in this dissertation provides the framework for stochastic multiscale modeling of composites and the characterization data needed to determine the effect of different environmental conditions on the material properties. The developed models extend sectional micromechanics techniques by incorporating 3D progressive damage theories and multiscale failure criteria. The mechanical testing of composites under various environmental conditions demonstrates the degrading effect these conditions have on the elastic and failure properties of the material. The methodologies presented in this research represent substantial progress toward understanding the failure and effect of variability for complex polymer matrix composites.
ContributorsJohnston, Joel Philip (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2016
154962-Thumbnail Image.png
Description
Cohesive zone model is one of the most widely used model for fracture analysis, but still remains open ended field for research. The earlier works using the cohesive zone model and Extended finite element analysis (XFEM) have been briefly introduced followed by an elaborate elucidation of the same concepts.

Cohesive zone model is one of the most widely used model for fracture analysis, but still remains open ended field for research. The earlier works using the cohesive zone model and Extended finite element analysis (XFEM) have been briefly introduced followed by an elaborate elucidation of the same concepts. Cohesive zone model in conjugation with XFEM is used for analysis in static condition in order to check its applicability in failure analysis. A real time setup of pipeline failure due to impingement is analyzed along with a detailed parametric study to understand the influence of the prominent design variable. After verifying its good applicability, a creep model is built for analysis where the cohesive zone model with XFEM is used for a time dependent creep loading. The challenge in this simulation was to achieve coupled behavior of cracks initiation and propagation along with creep loading. By using Design of Experiment, the results from numerical simulation were used to build an equation for life prediction for creep loading condition. The work was further extended to account for fatigue damage accumulation for high cycle fatigue loading in cohesive elements. A model was conceived to account for damage due to fatigue loading along within cohesive zone model for cohesive elements in ABAQUS simulation software. The model was verified by comparing numerical modelling of Double cantilever beam under high cycle fatigue loading and experiment results from literature. The model was also applied to a major industrial problem of blistering in Cured-In-Plane liner pipelines and a demonstration of its failure is shown. In conclusion, various models built on cohesive zone to address static and time dependent loading with real time scenarios and future scope of work in this field is discussed.
ContributorsChandrasekhar, Vishal (Author) / Liu, Yongming (Thesis advisor) / Oswald, Jay (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
154595-Thumbnail Image.png
Description
All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing

All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development.

The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally.

Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering.

The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns.

Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.
ContributorsKim, Inho (Author) / Chattopadhyay, Aditi (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Mignolet, Marc (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2016
154918-Thumbnail Image.png
Description
In this paper, at first, analytical formulation of J-integral for a non-local particle model (VCPM) using atomic scale finite element method is proposed for fracture analysis of 2D solids. A brief review of classical continuum-based J-integral and anon-local lattice particle method is given first. Following this, detailed derivation for the

In this paper, at first, analytical formulation of J-integral for a non-local particle model (VCPM) using atomic scale finite element method is proposed for fracture analysis of 2D solids. A brief review of classical continuum-based J-integral and anon-local lattice particle method is given first. Following this, detailed derivation for the J-integral in discrete particle system is given using the energy equivalence and stress-tensor mapping between the continuum mechanics and lattice-particle system.With the help of atomistic finite element method, the J-integral is expressed as a summation of the corresponding terms in the particle system.

Secondly, a coupling algorithm between a non-local particle method (VCPM) and the classical finite element method (FEM) is discussed to gain the advantages of both methods for fracture analysis in large structures. In this algorithm, the discrete VCPM particle and the continuum FEM domains are solved within a unified theoretical framework. A transitional element technology is developed to smoothly link the 10-particles element with the traditional FEM elements to guaranty the continuity and consistency at the coupling interface. An explicit algorithm for static simulation is developed.

Finally, numerical examples are illustrated for the accuracy, convergence, and path-independence of the derived J-integral formulation. Discussions on the comparison with alternative estimation methods and potential application for fracture simulation are given. The accuracy and efficiency of the coupling algorithm are tested by several benchmark problems such as static crack simulation.
ContributorsZope, Jayesh (Author) / Liu, Yongming (Thesis advisor) / Oswald, Jay (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
152471-Thumbnail Image.png
Description
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles

In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ~100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.
ContributorsMa, Teng (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Yu, Hongbin (Committee member) / Poon, Poh Chieh Benny (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2014
152472-Thumbnail Image.png
Description
ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.
ContributorsSun, Tianwei (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2014