Matching Items (44)
Filtering by

Clear all filters

154820-Thumbnail Image.png
Description
In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There

In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There are about 86 different types of defects found in the PV modules installed in various climates and most of them can be visually observed. However, a quantitative determination of impact or risk of each of identified defect on performance is challenging. Thus, it is utmost important to quantify the risk for each of the visual defects without any human subjectivity. The best way to quantify the risk of each defect is to perform current-voltage measurements of the defective modules installed in the plant but it requires disruption of plant operation, expensive measuring equipment and intensive human resources. One of the most riskiest and dominant visual defects is encapsulant browning which affects the PV module performance in the form of current degradation. The present study deals with developing an automated image processing tool which can address the issues of human subjectivity on browning level impacting performance. The image processing tool developed in this work can be directly used to quantify the impact of browning on performance without intrusively disconnecting the modules from the plant. In this work, the quantified browning level impact on performance has also been experimentally validated through a correlation study using short-circuit current and reflectance/transmittance measurements of browned PV modules retrieved from aged plants/systems installed in diverse climatic conditions. The primary goal of the image processing tool developed in this work is to determine the performance impact of encapsulant browning without interrupting the plant operation for I-V measurements. The use of image processing tool provides a single numerical value, called browning index (BI), which can accurately quantify browning levels on modules and also correlate with the performance and reflectance/transmittance parameters of the modules.
ContributorsGudla, Sushanth (Author) / Govindasamy, Tamizhmani (Thesis advisor) / Patrick, Phelan E (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154853-Thumbnail Image.png
Description
Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure

Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure mathematical consideration and only limited effort has been paid to include mechanical properties, the goal of my research is developing a method to analyze the mechanical behavior of origami and kirigami based structures. Mechanical characteristics, including nonlocal effect and fracture of the structures, as well as elasticity and plasticity of materials are studied. For calculation of relative simple structures and building of structures’ constitutive relations, analytical approaches were used. For more complex structures, finite element analysis (FEA), which is commonly applied as a numerical method for the analysis of solid structures, was utilized. The general study approach is not necessarily related to characteristic size of model. I believe the scale-independent method described here will pave a new way to understand the mechanical response of a variety of origami and kirigami based structures under given mechanical loading.
ContributorsLv, Cheng (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Mignolet, Marc (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2016
153948-Thumbnail Image.png
Description
Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.
ContributorsLee, Soochan (Author) / Phelan, Patrick E (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Taylor, Robert A. (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2015
154184-Thumbnail Image.png
Description
The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each

The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each of these applications, the thermal transport property plays a big role. An undesirable temperature rise due to inefficient heat dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, the first project is focused on investigating the thermal transport in colloidal nanocrystal solids. This study answers the question that how the molecular structure of nanocrystals affect the thermal transport, and provides insights for future device designs. In particular, PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and ligand binding group are systematically varied to study the corresponding effect on thermal transport.

Next, a fundamental study is presented on the phase stability and solid-liquid transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase change of nanoparticles has been a long-standing research topic, the melting behavior of colloidal nanocrytstals is largely unexplored. In addition, this study is of practical importance to nanocrystal-based applications that operate at elevated temperatures. Embedding colloidal nanocrystals into thermally-stable polymer matrices allows preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling observation of stable melting features. Size-dependent melting temperature, melting enthalpy and melting entropy have all been measured and discussed.

In the next two chapters, focus has been switched to developing colloidal nanocrystal-based phase change composites for thermal energy storage applications. In Chapter 4, a polymer matrix phase change nanocomposite has been created. In this composite, the melting temperature and energy density could be independently controlled by tuning nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on metal matrix-metal nanocrytal composite is presented. This approach enables excellent morphological control over nanocrystals and demonstrated a phase change composite with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change materials, such as organics and molten salts.
ContributorsLiu, Minglu (Author) / Wang, Robert Y (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Phelan, Patrick (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2015
154531-Thumbnail Image.png
Description
The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in

The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in wider applications. This thesis focuses on employing metamaterials and metafilms to enhance the conversion efficiency of solar thermal, solar thermophotovoltaic (STPV) and photovoltaic systems.

A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed metamaterial solar absorber exhibits absorptance higher than 95% in the solar spectrum but shows emittance less than 4% in the IR regime. This metamaterial solar absorber is further experimentally fabricated and optically characterized. Moreover, a metafilm selective absorber with stability up to 600oC is introduced, which exhibits solar absorptance higher than 90% and IR emittance less than 10%.

Solar thermophotovoltaic energy conversion enhanced by metamaterial absorbers and emitters is theoretically investigated in this thesis. The STPV system employing selective metamaterial absorber and emitter is investigated in this work, showing its conversion efficiency between 8% and 10% with concentration factor varying between 20 and 200. This conversion efficiency is remarkably enhanced compared with the conversion efficiency for STPV system employing black surfaces (<2.5%).

Moreover, plasmonic light trapping in ultra-thin solar cells employing concave grating nanostructures is discussed in this thesis. The plasmonic light trapping inside an ultrathin GaAs layer in the film-coupled metamaterial structure is numerically demonstrated. By exciting plasmonic resonances inside this structure, the short-circuit current density for the film-coupled metamaterial solar cell is three times the short-circuit current for a free-standing GaAs layer.

The dissertation is concluded by discussing about the future work on selective solar thermal absorbers, STPV/TPV systems and light trapping structures. Possibilities to design and fabricate solar thermal absorber with better thermal stability will be discussed, the experimental work of TPV system will be conducted, and the light trapping in organic and perovskite solar cells will be looked into.
ContributorsWang, Hao (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Dai, Lenore (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
154980-Thumbnail Image.png
Description
Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, but were unable to solve the strength anisotropy issue. To address this, an optical heating system has been proposed to achieve localized heating of the pre- deposition surface prior to material deposition over the heated region. This occurs in situ within the build process, and aims to increase the interface temperature to above glass transition (Tg), to trigger an increase in polymer chain diffusion, and in extension, increase the strength of the part. An increase in flexural strength by 95% at the layer interface has been observed when the optical heating method was implemented, thereby improving property isotropy of the FDM part. This approach can be designed to perform real time control of inter-filament and interlayer temperatures across the build volume of a part, and can be tuned to achieve required mechanical properties.
ContributorsKurapatti Ravi, Abinesh (Author) / Hao Hsu, Keng (Thesis advisor) / Hildreth, Owen (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154897-Thumbnail Image.png
Description
An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating

An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating on the surface of the plate and induce an in-plane stress wave. ANSYS – a finite element analysis software – is used to build the 3D model and a coupled thermal-mechanical simulation is performed in which the heat flux is determined by an empirical laser-heat conversion relationship. The displacement and stress field-histories are obtained to get the time of arrival and wave propagation speed of the stress wave. The effect of an added point mass is investigated in detail to observe the local material perturbation and remote wave signals. Following this, the experimental investigation of optoacoustic wave is also performed. A new experimental setup and control is developed and assembled in-house. Various laser firing parameters are investigated experimentally and the optimal combination is used for the experimental testing. Matrix design for different testing conditions is also proposed to include the effect of wave path, sampling procedure, and local point mass on the optoacoustic wave propagation. The developed numerical simulation results are validated with experimental observations. It is shown that the proposed experimental setup can offer a potential fast scanning method for damage detection (local property change) for plate-like structural component.
ContributorsLiu, Chen (Author) / Liu, Yongming (Thesis advisor) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
154908-Thumbnail Image.png
Description
Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV

Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV modules. This phenomenon occurs over a period of time with many unpredictable environmental variables indicated above. This situation makes it difficult to calculate or predict the soiling effect on performance. The dust particles vary from one location to the other in terms of particle size, color and chemical composition. These properties influence the extent of performance (current) loss, spectral loss and adhesion of soil particles on the surface of the PV modules. To address this uncontrolled environmental issues, research institutes around the world have started designing indoor artificial soiling stations to deposit soil layers in various controlled environments using reference soil samples and/or soil samples collected from the surface of PV modules installed in the locations of interest. This thesis is part of a twin thesis. The first thesis (this thesis) authored by Shanmukha Mantha is related to the development of soiling stations and the second thesis authored by Darshan Choudhary is associated with the characterization of the soiled samples (glass coupons, one-cell PV coupons and multi-cell PV coupons). This thesis is associated with the development of three types of indoor artificial soiling deposition techniques replicating the outside environmental conditions to achieve required soil density, uniformity and other required properties. The three types of techniques are: gravity deposition method, dew deposition method, and humid deposition method. All the three techniques were applied on glass coupons, single-cell PV laminates containing monocrystalline silicon cells and multi-cell PV laminates containing polycrystalline silicon cells. The density and uniformity for each technique on all targets are determined. In this investigation, both reference soil sample (Arizona road dust, ISO 12103-1) and the soil samples collected from the surface of installed PV modules were used. All the three techniques are compared with each other to determine the best method for uniform deposition at varying thickness levels. The advantages, limitations and improvements made in each technique are discussed.
ContributorsMantha, Shanmukha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154951-Thumbnail Image.png
Description
Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting

Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting defects in the PV modules. As many as 86 different defects can occur in a PV module. One of the major defects that can cause significant power loss is the interconnect metallization system (IMS) degradation which is the focus of this thesis. The IMS is composed of cell-interconnect (cell-ribbon interconnect) and string-interconnect (ribbon-ribbon interconnect). The cell interconnect is in turn composed of silver metallization (fingers and busbars) and solder bonds between silver busbar and copper ribbon. Weak solder bonding between copper ribbon and busbar of a cell results in increase of series resistance that in turn affects the fill factor causing a power drop. In this thesis work, the results obtained from various non-destructive and destructive experiments performed on modules exposed in three different climates (Arizona - Hot and Dry, Mexico - Warm and Humid, and California - Temperate) are presented. These experiments include light I-V measurements, dark I-V measurements, infrared imaging, extraction of test samples from the modules, peel strength measurements and four-point resistance measurements. The extraction of test samples was performed using a mechanical method and a chemical method. The merits and demerits of these two methods are presented. A drop of 10.33% in fill factor was observed for a 0.05Ω increase in the series resistance of the modules investigated in this work. Different combinations in a cell that can cause series resistance increase were considered and their effect on fill factor were observed using four-point probe experiments. Peel test experiments were conducted to correlate the effect of series resistance on the ribbon peel strength. Finally, climate specific thermal modelling was performed for 4 different sites over 20 years in order to calculate the accumulated thermal fatigue and also to evaluate its correlation, if any, with the increase of series resistance.
ContributorsTummala, Abhishiktha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
153244-Thumbnail Image.png
Description
Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover

Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover some of the wasted

heat. Thermal conductivity measurement systems are an important part of the char-

acterization processes of thermoelectric materials. These systems must possess the

capability of accurately measuring the thermal conductivity of both bulk and thin-lm

samples at dierent ambient temperatures.

This paper discusses the construction, validation, and improvement of a thermal

conductivity measurement platform based on the 3-Omega technique. Room temperature

measurements of thermal conductivity done on control samples with known properties

such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide

(SiO2) thin lms yielded 150 W=m&#1048576;K, 50 W=m&#1048576;K, and 1:46 W=m&#1048576;K respectively.

These quantities were all within 8% of literature values. In addition, the thermal

conductivity of bulk SiO2 was measured as a function of temperature in a Helium-

4 cryostat from 75K to 250K. The results showed good agreement with literature

values that all fell within the error range of each measurement. The uncertainty in

the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system

was used to measure the room temperature thermal conductivity of a nanocomposite

composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,

matrix as a function of the concentration of In2Se3. The observed trend was in

qualitative agreement with the expected behavior.

i
ContributorsJaber, Abbas (Author) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2014