Matching Items (36)
Filtering by

Clear all filters

150153-Thumbnail Image.png
Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
ContributorsShortridge, Randall (Author) / Chen, Kang Ping (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Huang, Huei-Ping (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2011
151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
149577-Thumbnail Image.png
Description
This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and

This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.
ContributorsKhatri, Jaidev (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2011
132111-Thumbnail Image.png
Description
An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD)

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD) and wind tunnel study was performed to study the effects of spoilers on vehicle aerodynamics and performance. Vehicle aerodynamics is geometry dependent, meaning what applies to one car may or may not apply on another. So, the Scion FRS was chosen as the test vehicle because it is has the “classic” sports car configuration with a long hood, short rear, and 2+2 passenger cabin while also being widely sold with a plethora of aftermarket aerodynamic modifications available. Due to computing and licensing restrictions, only a 2D CFD simulation was performed in ANSYS Fluent 19.1. A surface model of the centerline of the car was created in SolidWorks and imported into ANSYS, where the domain was created. A mesh convergence study was run to determine the optimum mesh size, and Realizable k-epsilon was the chosen physics model. The wind tunnel lacked equipment to record quantifiable data, so the wind tunnel was utilized for flow visualization on a 1/24 scale car model to compare with the CFD.

0° spoilers reduced the wake area behind the car, decreasing pressure drag but also decreasing underbody flow, causing a reduction in drag and downforce. Angled spoilers increased the wake area behind the car, increasing pressure drag but also increasing underbody flow, causing an increase in drag and downforce. Longer spoilers increased these effects compared to shorter spoilers, and short spoilers at different angles did not create significantly different effects. 0° spoilers would be best suited for cases that prioritize fuel economy or straight-line acceleration and speed due to the drag reduction, while angled spoilers would be best suited for cars requiring downforce. The angle and length of spoiler would depend on the downforce needed, which is dependent on the track.
ContributorsNie, Alexander (Author) / Wells, Valana (Thesis director) / Huang, Huei-Ping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
157667-Thumbnail Image.png
Description
In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.
ContributorsPrabhu, Saurabh (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157713-Thumbnail Image.png
Description
Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum.

Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum. An economic method is always desired to fabricate spectrally selective surfaces with improved energy conversion efficiency. Colloidal lithography is a recently emerged way of nanofabrication, which has advantages of low-cost and easy operation.

In this thesis, aluminum metasurface structures are proposed based on colloidal lithography method. High Frequency Structure Simulator is used to numerically study optical properties and design the aluminum metasurfaces with selective absorption. Simulation results show that proposed aluminum metasurface structure on aluminum oxide thin film and aluminum substrate has a major reflectance dip, whose wavelength is tunable within the near-infrared and visible spectrum with metasurface size. As the metasurface is opaque due to aluminum film, it indicates strong wavelength-selective optical absorption, which is due to the magnetic resonance between the top metasurface and bottom Al film within the aluminum oxide layer.

The proposed sample is fabricated based on colloidal lithography method. Monolayer polystyrene particles of 500 nm are successfully prepared and transferred onto silicon substrate. Scanning electron microscope is used to check the surface topography. Aluminum thin film with 20-nm or 50-nm thickness is then deposited on the sample. After monolayer particles are removed, optical properties of samples are measured by micro-scale optical reflectance and transmittance microscope. Measured and simulated reflectance of these samples do not have frequency selective properties and is not sensitive to defects. The next step is to fabricate the Al metasurface on Al_2 O_3 and Al films to experimentally demonstrate the selective absorption predicted from the numerical simulation.
ContributorsGuan, Chuyun (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
171541-Thumbnail Image.png
Description
The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to

The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to magic-sized clusters. Magic-sized clusters have an anomalously high thermal conductivity relative to the extrapolated size-dependence trend line for the colloidal nanocrystals. This anomalously high thermal conductivity could probably result from the monodispersity of magic-sized clusters. To support this conjecture, a method of deliberately eliminating the monodispersity of MSCs by mixing them with colloidal nanocrystals was performed. Experiment results showed that mixtures of nanocrystals and MSCs have a lower thermal conductivity that falls approximately on the extrapolated trendline for colloidal nanocrystal thermal conductivity as a function of size.
ContributorsSun, Ming-Hsien (Author) / Wang, Robert (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2022
168808-Thumbnail Image.png
Description
Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold

Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold build up in structures and dangerous illnesses in humans. Most common dehumidifiers are based on conventional mechanical refrigeration cycles, where the effects of condensation heat transfer play a critical role in their effectiveness. In these devices, humid ambient air flows over a cold evaporator, which lowers the temperature of the humid ambient air below its dew point temperature and therefore decreases its water content by causing liquid water condensation on the evaporator surface. The rate at which humidity can be extracted from the ambient air is governed in part by how quickly the evaporator can shed the condensed droplets. Recent advances in soft, stretchable, thermally enhanced (through the addition of liquid metals) silicone tubing offer the potential to use these stretchable tubes in place of conventional copper pipe for applications such as dehumidification. Copper is a common material choice for dehumidifier evaporator tubing owing to its ubiquity and its high thermal conductivity, but it has several thermal downsides. Specifically, copper tubes remain static and typically rely on gravity alone to remove water droplets when they reach a sufficient mass. Additionally, copper’s naturally hydrophilic surface promotes film-wise condensation, which is substantially less effective than dropwise condensation. In contrast to copper, thermally enhanced soft stretchable tubes have naturally hydrophobic surfaces that promote the more effective dropwise condensation mode and a soft surface that offers higher nucleation density. However, soft surfaces also increase droplet pinning, which inhibits their departure. This work experimentally explores the effects of periodic axial stretching and retraction of soft tubing internally cooled with water on droplet condensation dynamics on its exterior surface. Results are discussed in terms of overall system thermal performance and real-time condensation imaging. An overall null result is discovered, and recommendations for future experiments are made.
Contributorsnordstog, thomas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2022
190894-Thumbnail Image.png
Description
Energy storage technologies are essential to overcome the temporal variability in renewable energy. The primary aim of this thesis is to develop reactor solutions to better analyze the potential of thermochemical energy storage (TCES) using non-stoichiometric metal oxides, for the multi-day energy storage application. A TCES system consists of a

Energy storage technologies are essential to overcome the temporal variability in renewable energy. The primary aim of this thesis is to develop reactor solutions to better analyze the potential of thermochemical energy storage (TCES) using non-stoichiometric metal oxides, for the multi-day energy storage application. A TCES system consists of a reduction reactor and an insulated MOx storage bin. The reduction reactor heats (to ~ 1100 °C) and partially reduces the MOx, thereby adding sensible and chemical energy (i.e., charging it) under reduced pO2 environments (~10 Pa). Inert gas removes the oxygen generated during reduction. The storage bin holds the hot and partially reduced MOx (typically particles) until it is used in an energy recovery device (i.e., discharge). Irrespective of the reactor heat source (here electrical), or the particle-inert gas flows (here countercurrent), the thermal reduction temperature and inert gas (here N2) flow minimize when the process approaches reversibility, i.e., operates near equilibrium. This study specifically focuses on developing a reduction reactor based on the theoretical considerations for approaching reversibility along the reaction path. The proposed Zigzag flow reactor (ZFR) is capable of thermally reducing CAM28 particles at temperatures ~ 1000 °C under an O2 partial pressure ~ 10 Pa. The associated analytical and numerical models analyze the reaction equilibrium under a real (discrete) reaction path and the mass transfer kinetic conditions necessary to approach equilibrium. The discrete equilibrium model minimizes the exergy destroyed in a practical reactor and identifies methods of maximizing the energy storage density () and the exergetic efficiency. The mass transfer model analyzes the O2 N2 concentration boundary layers to recommend sizing considerations to maximize the reactor power density. Two functional ZFR prototypes, the -ZFR and the -ZFR, establish the proof of concept and achieved a reduction extent, Δδ = 0.071 with CAM28 at T~950 °C and pO2 = 10 Pa, 7x higher than a previous attempt in the literature. The -ZFR consistently achieved  > 100 Wh/kg during >10 h. runtime and the -ZFR displayed an improved  = 130 Wh/kg during >5 h. operation with CAM28. A techno-economic model of a grid-scale ZFR with an associated storage bin analyzes the cost of scaling the ZFR for grid energy storage requirements. The scaled ZFR capital costs contribute < 1% to the levelized cost of thermochemical energy storage, which ranges from 5-20 ¢/kWh depending on the storage temperature and storage duration.
ContributorsGhotkar, Rhushikesh (Author) / Milcarek, Ryan (Thesis advisor) / Ermanoski, Ivan (Committee member) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2023
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023