Matching Items (6)
Filtering by

Clear all filters

Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134422-Thumbnail Image.png
Description
The goal of this honors thesis creative project was to design, manufacture and test a retrofitted E-bike kit that met certain stated design objections. To design a successful E-bike kit, the needs of the customer were researched and turned into measurable engineering requirements. For the biker, these requirements are speed,

The goal of this honors thesis creative project was to design, manufacture and test a retrofitted E-bike kit that met certain stated design objections. To design a successful E-bike kit, the needs of the customer were researched and turned into measurable engineering requirements. For the biker, these requirements are speed, range, cost and simplicity. The approach is outlined similarly to the capstone program here at ASU. There is an introduction in sections 1 and 2 which gives the motivation and an overview of the project done. In section 3, the voice of the customer is discussed and converted into requirements. In sections 4, 5,6,7 and 8 the design process is described. Section 4 is the conceptual design where multiple concepts are narrowed down to one design. Section 5 is the preliminary design, where the design parts are specified and optimized to fit requirements. Section 6 is fabrication and assembly which gives details into how the product was manufactured and built. Sections 7 and 8 are the testing and validation sections where tests were carried out to verify that the requirements were met. Sections 9 and 10 were part of the conclusion in which recommendations and the project conclusions are depicted. In general, I produced a successful prototype. Each phase of the design came with its own issues and solutions but in the end a functioning bike was delivered. There were a few design options considered before selecting the final design. The rear-drive friction design was selected based on its price, simplicity and performance. The design was optimized in the preliminary design phase and items were purchased. The purchased items were either placed on the bike directly or had to be manufactured in some way. Once the assembly was completed, testing and validation took place to verify that the design met the requirements. Unfortunately, the prototype did not meet all the requirements. The E-bike had a maximum speed of 14.86 mph and a range of 12.75 miles which were below the performance requirements of 15 mph and 15 miles. The cost was $41.67 over the goal of $300 although the total costs remained under budget. At the end of the project, I delivered a functioning E-bike retrofitting kit on the day of the defense. While it did not meet the requirements fully, there was much room for improvement and optimization within the design.
ContributorsLangerman, Jonathon Henry (Author) / Phelan, Patrick (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137820-Thumbnail Image.png
Description
The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the

The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the most important, and likely the most under recognized, challenge lies in developing advanced personalized learning. It is the core foundation from which the rest of the challenges can be accomplished. Without an effective method of teaching engineering students how to realize these grand challenges, the knowledge pool from which to draw new innovations and discoveries will be greatly diminished. This paper introduces the Inventors Workshop (IW), a hands-on, passion-based approach to personalized learning. It is intended to serve as a manual that will inform the next generation of student leaders and inventioneers about the core concepts the Inventors Workshop was built upon, and how to continue improvement into the future. Due to the inherent complexities in the grand challenge of personalized learning, the IW has developed a multifaceted solution that is difficult to explain in a single phrase. To enable comprehension of the IW's full vision, the process undergone to date of establishing and expanding the IW is described. In addition, research has been conducted to determine a variety of paths the Inventors Workshop may utilize in future expansion. Each of these options is explored and related to the core foundations of the IW to assist future leaders and partners in effectively improving personalized learning at ASU and beyond.
ContributorsEngelhoven, V. Logan (Author) / Burleson, Winslow (Thesis director) / Peck, Sidnee (Committee member) / Fortun, A. L. Cecil (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
164645-Thumbnail Image.png
Description
Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over

Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over the last few years with the impact that covid had on the global supply chain. Prices of materials and labor have never been higher, and with this, the price of energy continues to increase. Therefore, it is important to explore methods to make homes more energy-efficient without the price tag. In addition to benefitting the homeowner by decreasing the cost of their monthly utility bills, making homes more energy efficient will aid in the overall goal of reducing carbon emissions.
ContributorsFiller, Peyton (Author) / Phelan, Patrick (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05