Matching Items (80)
Filtering by

Clear all filters

136382-Thumbnail Image.png
Description
The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace

The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace technology. This technique employs PZT transducers to actuate and collect guided Lamb wave signals. Matching pursuit decomposition (MPD) is used to decompose the signal into a cross-term free time-frequency relation. This decoupling of time and frequency facilitates the calculation of a signal's time-of-flight along a path between an actuator and sensor. Using the time-of-flights, comparisons can be made between similar composite structures to find damaged regions by examining differences in the time of flight for each path between PZTs, with respect to direction. Relatively large differences in time-of-flight indicate the presence of new or more significant damage, which can be verified using a physics-based approach. Wave propagation modeling is used to implement a physics based approach to this method, which is coupled with adaptive algorithms that take into account currently existing damage to a composite structure. Previous SHM techniques for composite structures rely on the assumption that the composite is initially free of all damage on both a macro and micro-scale, which is never the case due to the inherent introduction of material defects in its fabrication. This method provides a novel technique for investigating the presence and nature of damage in composite structures. Further investigation into the technique can be done by testing structures with different sizes of damage and investigating the effects of different operating temperatures on this SHM system.
ContributorsBarnes, Zachary Stephen (Author) / Chattopadhyay, Aditi (Thesis director) / Neerukatti, Rajesh Kumar (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134375-Thumbnail Image.png
Description
To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The engine was mounted with a diffuser disc exhaust to restrict flow, and a pressure sensor was installed in the O2 port to measure pressure under different restrictions. During testing, problems with the equipment prevented suitable from being generated. Using failure root cause analysis, the failure modes were identified and plans were made to resolve those issues. While no useful data was generated, the project successfully rebuilt a dynamometer for students to use for future engine research.
ContributorsRoss, Zachary David (Author) / Middleton, James (Thesis director) / Steele, Bruce (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134422-Thumbnail Image.png
Description
The goal of this honors thesis creative project was to design, manufacture and test a retrofitted E-bike kit that met certain stated design objections. To design a successful E-bike kit, the needs of the customer were researched and turned into measurable engineering requirements. For the biker, these requirements are speed,

The goal of this honors thesis creative project was to design, manufacture and test a retrofitted E-bike kit that met certain stated design objections. To design a successful E-bike kit, the needs of the customer were researched and turned into measurable engineering requirements. For the biker, these requirements are speed, range, cost and simplicity. The approach is outlined similarly to the capstone program here at ASU. There is an introduction in sections 1 and 2 which gives the motivation and an overview of the project done. In section 3, the voice of the customer is discussed and converted into requirements. In sections 4, 5,6,7 and 8 the design process is described. Section 4 is the conceptual design where multiple concepts are narrowed down to one design. Section 5 is the preliminary design, where the design parts are specified and optimized to fit requirements. Section 6 is fabrication and assembly which gives details into how the product was manufactured and built. Sections 7 and 8 are the testing and validation sections where tests were carried out to verify that the requirements were met. Sections 9 and 10 were part of the conclusion in which recommendations and the project conclusions are depicted. In general, I produced a successful prototype. Each phase of the design came with its own issues and solutions but in the end a functioning bike was delivered. There were a few design options considered before selecting the final design. The rear-drive friction design was selected based on its price, simplicity and performance. The design was optimized in the preliminary design phase and items were purchased. The purchased items were either placed on the bike directly or had to be manufactured in some way. Once the assembly was completed, testing and validation took place to verify that the design met the requirements. Unfortunately, the prototype did not meet all the requirements. The E-bike had a maximum speed of 14.86 mph and a range of 12.75 miles which were below the performance requirements of 15 mph and 15 miles. The cost was $41.67 over the goal of $300 although the total costs remained under budget. At the end of the project, I delivered a functioning E-bike retrofitting kit on the day of the defense. While it did not meet the requirements fully, there was much room for improvement and optimization within the design.
ContributorsLangerman, Jonathon Henry (Author) / Phelan, Patrick (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133548-Thumbnail Image.png
Description
Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.
ContributorsHolmes, Breanna Swift (Author) / Zhang, Wenlong (Thesis director) / Polygerinos, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133669-Thumbnail Image.png
Description
The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the

The removal of support material from metal 3D printed objects is a laborious necessity for the post-processing of powder bed fusion printing (PBF). Supports are typically mechanically removed by machining techniques. Sacrificial supports are necessary in PBF printing to relieve thermal stresses and support overhanging parts often resulting in the inclusion of supports in regions of the part that are not easily accessed by mechanical removal methods. Recent innovations in PBF support removal include dissolvable metal supports through an electrochemical etching process. Dissolvable PBF supports have the potential to significantly reduce the costs and time associated with traditional support removal. However, the speed and effectiveness of this approach is inhibited by numerous factors such as support geometry and metal powder entrapment within supports. To fully realize this innovative approach, it is necessary to model and understand the design parameters necessary to optimize support structures applicable to an electrochemical etching process. The objective of this study was to evaluate the impact of block additive manufacturing support parameters on key process outcomes of the dissolution of 316 stainless steel support structures. The parameters investigated included hatch spacing and perforation, and the outcomes of interests included time required for completion, surface roughness, and effectiveness of the etching process. Electrical current was also evaluated as an indicator of process completion. Analysis of the electrical current throughout the etching process showed that the dissolution is diffusion limited to varying degrees, and is dependent on support structure parameters. Activation and passivation behavior was observed during current leveling, and appeared to be more pronounced in non-perforated samples with less dense hatch spacing. The correlation between electrical current and completion of the etching process was unclear, as the support structures became mechanically removable well before the current leveled. The etching process was shown to improve surface finish on unsupported surfaces, but support was shown to negatively impact surface finish. Tighter hatch spacing was shown to correlate to larger variation in surface finish, due to ridges left behind by the support structures. In future studies, it is recommended current be more closely correlated to process completion and more roughness data be collected to identify a trend between hatch spacing and surface roughness.
ContributorsAbranovic, Brandon (Author) / Hildreth, Owen (Thesis director) / Torres, Cesar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133748-Thumbnail Image.png
Description
This research report investigates the feasibility of using RFID in Traffic Sign Recognition (TSR) Systems for autonomous vehicles, specifically driver-less cars. Driver-less cars are becoming more prominent in society but must be designed to integrate with the current transportation infrastructure. Current research in TSR systems use image processing as well

This research report investigates the feasibility of using RFID in Traffic Sign Recognition (TSR) Systems for autonomous vehicles, specifically driver-less cars. Driver-less cars are becoming more prominent in society but must be designed to integrate with the current transportation infrastructure. Current research in TSR systems use image processing as well as LIDAR to identify traffic signs, yet these are highly dependent on lighting conditions, camera quality and sign visibility. The read rates of current TSR systems in literature are approximately 96 percent. The usage of RFID in TSR systems can improve the performance of traditional TSR systems. An RFID TSR was designed for the Autonomous Pheeno Test-bed at the Arizona State University (ASU) Autonomous Collective Systems (ACS) Laboratory. The system was tested with varying parameters to see the effect of the parameters on the read rate. It was found that high reader strength and low tag distance had a maximum read rate of 96.3 percent, which is comparable to existing literature. It was proven that an RFID TSR can perform as well as traditional TSR systems, and has the capacity to improve accuracy when used alongside RGB cameras and LIDAR.
ContributorsMendoza, Madilyn Kido (Author) / Berman, Spring (Thesis director) / Yu, Hongbin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134889-Thumbnail Image.png
Description
The purpose of this project focuses on analyzing how a typically brittle material, such as PLA, can be manipulated to become deformable, through the development of an origami structure, in this case—the Yoshimuri pattern. The experimental methodology focused on creating a base Solidworks model, with varying hinge depths, and 3D

The purpose of this project focuses on analyzing how a typically brittle material, such as PLA, can be manipulated to become deformable, through the development of an origami structure, in this case—the Yoshimuri pattern. The experimental methodology focused on creating a base Solidworks model, with varying hinge depths, and 3D printing these various models. A cylindrical shell was also developed with comparable dimensions to the Yoshimuri dimensions. These samples were then tested through compression testing, with the load-displacement, and thus the stress-strain curves are analyzed. From the results, it was found that generally, the Yoshimuri samples had a higher level of deformation compared to the cylindrical shell. Moreover, the cylindrical shell had a higher stiffness ratio, while the Yoshimuri patterns had strain rates as high as 16%. From this data, it can be concluded that by changing how the structure is created through origami patterns, it is possible to shift the characteristics of a structure even if the material properties are initially quite brittle.
ContributorsSundar, Vaasavi (Author) / Jiang, Hanqing (Thesis director) / Kingsbury, Dallas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.
ContributorsShuster, Eden S. (Author) / Thanga, Jekan (Thesis director) / Asphaug, Erik (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05