Matching Items (46)
Filtering by

Clear all filters

149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150341-Thumbnail Image.png
Description
A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in

A numerical study of incremental spin-up and spin-up from rest of a thermally- stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface is presented. Thermally stratified spin-up is a typical example of baroclinity, which is initiated by a sudden increase in rotation rate and the tilting of isotherms gives rise to baroclinic source of vorticity. Research by (Smirnov et al. [2010a]) showed the differences in evolution of instabilities when Dirichlet and Neumann thermal boundary conditions were applied at top and bottom walls. Study of parametric variations carried out in this dissertation confirmed the instability patterns observed by them for given aspect ratio and Rossby number values greater than 0.5. Also results reveal that flow maintained axisymmetry and stability for short aspect ratio containers independent of amount of rotational increment imparted. Investigation on vorticity components provides framework for baroclinic vorticity feedback mechanism which plays important role in delayed rise of instabilities when Dirichlet thermal Boundary Conditions are applied.
ContributorsKher, Aditya Deepak (Author) / Chen, Kangping (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
150321-Thumbnail Image.png
Description
Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive

Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive flow control to delay separation on bluff bodies is known, basic mechanisms are not well understood. Of particular interest for the current work is understanding the role of surface dimpling on boundary layers. A computational approach is employed and the study has two main goals. The first is to understand and advance the numerical methodology utilized for the computations. The second is to shed some light on the details of how surface dimples distort boundary layers and cause transition to turbulence. Simulations are performed of the flow over a simplified configuration: the flow of a boundary layer over a dimpled flat plate. The flow is modeled using an immersed boundary as a representation of the dimpled surface along with direct numerical simulation of the Navier-Stokes equations. The dimple geometry used is fixed and is that of a spherical depression in the flat plate with a depth-to-diameter ratio of 0.1. The dimples are arranged in staggered rows separated by spacing of the center of the bottom of the dimples by one diameter in both the spanwise and streamwise dimensions. The simulations are conducted for both two and three staggered rows of dimples. Flow variables are normalized at the inlet by the dimple depth and the Reynolds number is specified as 4000 (based on freestream velocity and inlet boundary layer thickness). First and second order statistics show the turbulent boundary layers correlate well to channel flow and flow of a zero pressure gradient flat plate boundary layers in the viscous sublayer and the buffer layer, but deviates further away from the wall. The forcing of transition to turbulence by the dimples is unlike the transition caused by a naturally transitioning flow, a small perturbation such as trip tape in experimental flows, or noise in the inlet condition for computational flows.
ContributorsGutierrez-Jensen, Jeremiah J (Author) / Squires, Kyle (Thesis advisor) / Hermann, Marcus (Committee member) / Gelb, Anne (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
151838-Thumbnail Image.png
Description
The objective of this research is to develop methods for generating the Tolerance-Map for a line-profile that is specified by a designer to control the geometric profile shape of a surface. After development, the aim is to find one that can be easily implemented in computer software using existing libraries.

The objective of this research is to develop methods for generating the Tolerance-Map for a line-profile that is specified by a designer to control the geometric profile shape of a surface. After development, the aim is to find one that can be easily implemented in computer software using existing libraries. Two methods were explored: the parametric modeling method and the decomposed modeling method. The Tolerance-Map (T-Map) is a hypothetical point-space, each point of which represents one geometric variation of a feature in its tolerance-zone. T-Maps have been produced for most of the tolerance classes that are used by designers, but, prior to the work of this project, the method of construction required considerable intuitive input, rather than being based primarily on automated computer tools. Tolerances on line-profiles are used to control cross-sectional shapes of parts, such as every cross-section of a mildly twisted compressor blade. Such tolerances constrain geometric manufacturing variations within a specified two-dimensional tolerance-zone. A single profile tolerance may be used to control position, orientation, and form of the cross-section. Four independent variables capture all of the profile deviations: two independent translations in the plane of the profile, one rotation in that plane, and the size-increment necessary to identify one of the allowable parallel profiles. For the selected method of generation, the line profile is decomposed into three types of segments, a primitive T-Map is produced for each segment, and finally the T-Maps from all the segments are combined to obtain the T-Map for the given profile. The types of segments are the (straight) line-segment, circular arc-segment, and the freeform-curve segment. The primitive T-Maps are generated analytically, and, for freeform-curves, they are built approximately with the aid of the computer. A deformation matrix is used to transform the primitive T-Maps to a single coordinate system for the whole profile. The T-Map for the whole line profile is generated by the Boolean intersection of the primitive T-Maps for the individual profile segments. This computer-implemented method can generate T-Maps for open profiles, closed ones, and those containing concave shapes.
ContributorsHe, Yifei (Author) / Davidson, Joseph (Thesis advisor) / Shah, Jami (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
150613-Thumbnail Image.png
Description
Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential to have computational tools to help designers. Over the past few decades, computational

Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential to have computational tools to help designers. Over the past few decades, computational fluid dynamics (CFD) has played a key role in the design of turbomachinary and will be heavily relied upon for the design of future components. In order to design components with the least amount of experimental rig testing, the ensemble of submodels used in simulations must be known to accurately predict the component's performance. The present work aims to validate a CFD model used for a reverse flow, rich-burn, quick quench, lean-burn combustor being developed at Honeywell. Initially, simulations are performed to establish a baseline which will help to assess impact to combustor performance made by changing CFD models. Rig test data from Honeywell is compared to these baseline simulation results. Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) turbulence models are both used with the presumption that the LES turbulence model will better predict combustor performance. One specific model, the fuel spray model, is evaluated next. Experimental data of the fuel spray in an isolated environment is used to evaluate models for the fuel spray and a new, simpler approach for inputting the spray boundary conditions (BC) in the combustor is developed. The combustor is simulated once more to evaluate changes from the new fuel spray boundary conditions. This CFD model is then used in a predictive simulation of eight other combustor configurations. All computer simulations in this work were preformed with the commercial CFD software ANSYS FLUENT. NOx pollutant emissions are predicted reasonably well across the range of configurations tested using the RANS turbulence model. However, in LES, significant under predictions are seen. Causes of the under prediction in NOx concentrations are investigated. Temperature metrics at the exit of the combustor, however, are seen to be better predicted with LES.
ContributorsSpencer, A. Jeffrey (Author) / Herrmann, Marcus (Thesis advisor) / Chen, Kangping (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
149428-Thumbnail Image.png
Description
Passive flow control achieved by surface dimpling can be an effective strategy for reducing drag around bluff bodies - an example of substantial popular interest being the flow around a golf ball. While the general effect of dimples causing a delay of boundary layer separation is well known, the mechanisms

Passive flow control achieved by surface dimpling can be an effective strategy for reducing drag around bluff bodies - an example of substantial popular interest being the flow around a golf ball. While the general effect of dimples causing a delay of boundary layer separation is well known, the mechanisms contributing to this phenomena are subtle and not thoroughly understood. Numerical models offer a powerful approach for studying drag reduction, however simulation strategies are challenged by complex geometries, and in applications the introduction of ad hoc turbulence models which introduce additional uncertainty. These and other factors provide much of the motivation for the current study, which focused on the numerical simulations of the flow over a simplified configuration consisting of a dimpled flat plate. The principal goals of the work are to understand the performance of the numerical methodology, and gain insight into the underlying physics of the flow. Direct numerical simulation of the incompressible Navier-Stokes equations using a fractional step method was employed, with the dimpled flat plate represented using an immersed boundary method. The dimple geometry utilizes a fixed dimple aspect ratio, with dimples arranged in a single spanwise row. The grid sizes considered ranged from approximately 3 to 99 million grid points. Reynolds numbers of 3000 and 4000 based on the inlet laminar boundary layer thickness were simulated. A turbulent boundary layer was induced downstream of the dimples for Reynolds numbers which did not transition for the flow over an undimpled flat plate. First and second order statistics of the boundary layer that develops agree reasonably well with those for turbulent channel flow and flat plate boundary layers in the sublayer and buffer layers, but differ in the outer layer. Inspection of flow visualizations suggest that early transition is promoted by thinning of the boundary layer, initiation of shear layer instabilities over the dimples, flow separation and reattachment, and tripping of the boundary layer at the trailing edge of the dimples.
ContributorsMode, Jeffrey Michael (Author) / Squires, Kyle (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2010
151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
161596-Thumbnail Image.png
Description
Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing

Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing (HIP) as conventional heat treatment. This study aims at investigating the dependence of High Cycle Fatigue (HCF) behavior on wall thickness and Hot Isostatic Pressing (HIP) for as-built Additively Manufactured Thin Wall Inconel 718 alloys. To address this aim, high cycle fatigue tests were performed on specimens of seven different thicknesses (0.3mm,0.35mm, 0.5mm, 0.75mm, 1mm, 1.5mm, and 2mm) using a Servohydraulic FatigueTesting Machine. Only half of the specimen underwent HIP, creating data for bothHIP and No-HIP specimens. Upon analyzing the collected data, it was noticed that the specimens that underwent HIP had similar fatigue behavior to that of sheet metal specimens. In addition, it was also noticed that the presence of Porosity in No-HIP specimens makes them more sensitive to changes in stress. A clear decrease in fatigue strength with the decrease in thickness was observed for all specimens.
ContributorsSaxena, Anushree (Author) / Bhate, Dhruv (Thesis advisor) / Liu, Yongming (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2021
161968-Thumbnail Image.png
Description
Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying

Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying the performance of atomizers. This thesis implements two models of ligament breakup. The first model provides a method to determine the droplet size distribution of fragmenting ligaments. The second model provides a relation between ligament stretching, aspect ratio and dimensionless properties like Ohnesorge and Weber numbers for ligaments being stretched by aerodynamic force. The first model by Villermaux et.al considers a ligament as a linear succession of liquid blobs which undergo continuous interplay during destabilization. The evolution of their size distribution ultimately rules the droplet size distribution which follow a gamma distribution [14]. The results show that the Direct Numerical Simulations (DNS) of ligaments with different perturbations fragmented into very few drops and cannot be used to confirm that they follow the predicted gamma distribution. The second model considers a ligament breakup due to Rayleigh-Plateau Instability and provides an equation for ligament stretching. Through test runs the proportionality constant in the equation is determined by a least square fit. The theoretical number of drops is compared with the number of drops resulting from the Direct Numerical Simulation of ligament with a sinusoidal perturbation. It is found that the wavelength of the initial perturbation does not determine the number of drops obtained by ligament breakup
ContributorsRama Krishna, Prathyush (Author) / Herrmann, Marcus (Thesis advisor) / Takahashi, Timothy (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2021