Matching Items (52)
Filtering by

Clear all filters

Description
Heusler alloys were discovered in 1903, and materials with half-metallic characteristics have drawn more attention from researchers since the advances in semiconductor industry [1]. Heusler alloys have found application as spin-filters, tunnel junctions or giant magnetoresistance (GMR) devices in technological applications [1]. In this work, the electronic structures, phonon

Heusler alloys were discovered in 1903, and materials with half-metallic characteristics have drawn more attention from researchers since the advances in semiconductor industry [1]. Heusler alloys have found application as spin-filters, tunnel junctions or giant magnetoresistance (GMR) devices in technological applications [1]. In this work, the electronic structures, phonon dispersion, thermal properties, and electrical conductivities of PdMnSn and six novel alloys (AuCrSn, AuMnGe, Au2MnSn, Cu2NiGe, Pd2NiGe and Pt2CoSn) along with their magnetic moments are studied using ab initio calculations to understand the roots of half-metallicity in these alloys of Heusler family. From the phonon dispersion, the thermodynamic stability of the alloys in their respective phases is assessed. Phonon modes were also used to further understand the electrical transport in the crystals of these seven alloys. This study evaluates the relationship between materials' electrical conductivity and minority-spin bandgap in the band structure, and it provides suggestions for selecting constituent elements when designing new half-metallic Heusler alloys of C1b and L21 structures.
ContributorsPatel, Deep (Author) / Zhuang, Houlong (Thesis advisor) / Solanki, Kiran (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
172014-Thumbnail Image.png
Description
A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from

A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from the cooling/heating system, air exchange associated with exfiltration and relief air, and heat transfer between the building envelope and surroundings. Several recent studies show that the building envelope generates more heat release into the environment than any other building component.Current advancements in material science have enabled the development of materials and coatings with very high solar reflectance and thermal emissivity, and that can alter their radiative properties based on surface temperature. This dissertation is an effort to quantify the impact of recent developments in such technologies on urban air. The current study addresses three specific unresolved topics: 1) the relative importance of rooftop solar reflectance and thermal emissivity, 2) the role of rooftop radiative properties in different climates, and 3) the impact of temperature-adaptive exterior materials/coatings on building energy savings and urban cooling. The findings from this study show that the use of rooftop materials with solar reflectance above 0.9 maintain the surface temperature below ambient air temperature most of the time, even when the materials have conventional thermal emissivity (0.9). This research has demonstrated that for hot cities, rooftops with high solar reflectance and thermal emittance maximize building energy savings and always cool the surrounding air. For moderate climate regions, high solar reflectance and low thermal emittance result in the greatest building energy cost savings. This combination of radiative properties cools the air during the daytime and warms it at night. Finally, this research found that temperature-adaptive materials could play a significant role in reducing utility costs for poorly insulated buildings, but that they heat the surrounding air in the winter, irrespective of the rooftop insulation. Through the detailed analysis of building façade radiative properties, this dissertation offers climate-specific design guidance that can be used to simultaneously optimize energy costs while minimizing adverse warming of the surrounding environment.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Sailor, David (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Yeom, Dongwoo Jason (Committee member) / Arizona State University (Publisher)
Created2022