Matching Items (61)
Filtering by

Clear all filters

151803-Thumbnail Image.png
Description
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives

Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
ContributorsPatel, Harshil Naresh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
151000-Thumbnail Image.png
Description
Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find a lot of applications. To understand the complex physics behind gel's swelling phenomenon, it is important to build up fundamental

Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find a lot of applications. To understand the complex physics behind gel's swelling phenomenon, it is important to build up fundamental mechanical model and extend to complicated cases. In this dissertation, a coupled large deformation and diffusion model regarding gel's swelling behavior is presented. In this model, free-energy of the total gel is constituted by polymer stretching energy and polymer-solvent mixing energy. In-house nonlinear finite element code is implemented with fast computational capability. Complex phenomenon such as buckling and healing of cracked gel by swelling are studied. Due to the wide coverage of polymeric materials and solvents, solvent diffusion in gels not only follows Fickian diffusion law where concentration map is continuous but also follows non-Fickian diffusion law where concentration map shows high gradient. Phenomenological model with viscoelastic polymer constitutive and concentration dependent diffusivity is created. The model well captures this special diffusion phenomenon such as sharp diffusion front and distinctive swollen and unswollen region.
ContributorsZhang, Jiaping (Author) / Jiang, Hanqing (Thesis advisor) / Peralta, Pedro (Committee member) / Dai, Lenore (Committee member) / Rajan, Subramaniam D. (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2012
Description
The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are

The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to show great promise. This study serves as the basis for a radical resolution to one of the few remaining barriers left in the development of high performing Si based electrodes for Li-ion batteries.
ContributorsShaffer, Joseph (Author) / Jiang, Hanqing (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2011
149487-Thumbnail Image.png
Description
Current trends in the Computer Aided Engineering (CAE) involve the integration of legacy mesh-based finite element software with newer solid-modeling kernels or full CAD systems in order to simplify laborious or highly specialized tasks in engineering analysis. In particular, mesh generation is becoming increasingly automated. In addition, emphasis is increasingly

Current trends in the Computer Aided Engineering (CAE) involve the integration of legacy mesh-based finite element software with newer solid-modeling kernels or full CAD systems in order to simplify laborious or highly specialized tasks in engineering analysis. In particular, mesh generation is becoming increasingly automated. In addition, emphasis is increasingly placed on full assembly (multi-part) models, which in turn necessitates an automated approach to contact analysis. This task is challenging due to increases in algebraic system size, as well as increases in the number of distorted elements - both of which necessitate manual intervention to maintain accuracy and conserve computer resources. In this investigation, it is demonstrated that the use of a mesh-free B-Spline finite element basis for structural contact problems results in significantly smaller algebraic systems than mesh-based approaches for similar grid spacings. The relative error in calculated contact pressure is evaluated for simple two dimensional smooth domains at discrete points within the contact zone and compared to the analytical Hertz solution, as well as traditional mesh-based finite element solutions for similar grid spacings. For smooth curved domains, the relative error in contact pressure is shown to be less than for bi-quadratic Serendipity elements. The finite element formulation draws on some recent innovations, in which the domain to be analyzed is integrated with the use of transformed Gauss points within the domain, and boundary conditions are applied via distance functions (R-functions). However, the basis is stabilized through a novel selective normalization procedure. In addition, a novel contact algorithm is presented in which the B-Spline support grid is re-used for contact detection. The algorithm is demonstrated for two simple 2-dimensional assemblies. Finally, a modified Penalty Method is demonstrated for connecting elements with incompatible bases.
ContributorsGrishin, Alexander (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joe (Committee member) / Hjelmstad, Keith (Committee member) / Huebner, Ken (Committee member) / Farin, Gerald (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2010
161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
171530-Thumbnail Image.png
Description
Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained

Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained input-output data to invalidate the models, while AMD designs an auxiliary input to assist the discrimination process. First, PMD algorithms are proposed for noisy switched nonlinear systems constrained by metric/signal temporal logic specifications, including systems with lossy data modeled by (m,k)-firm constraints. Specifically, optimization-based algorithms are introduced for analyzing the detectability/distinguishability of models and for ruling out models that are inconsistent with observations at run time. On the other hand, two AMD approaches are designed for noisy switched nonlinear models and piecewise affine inclusion models, which involve bilevel optimization with integer variables/constraints in the inner/lower level. The first approach solves the inner problem using mixed-integer parametric optimization, whose solution is included when solving the outer problem/higher level, while the second approach moves the integer variables/constraints to the outer problem in a manner that retains feasibility and recasts the problem as a tractable mixed-integer linear programming (MILP). Furthermore, AMD algorithms are proposed for noisy discrete-time affine time-invariant systems constrained by disjunctive and coupled safety constraints. To overcome the issues associated with generalized semi-infinite constraints due to state-dependent input constraints and disjunctive safety constraints, several constraint reformulations are proposed to recast the AMD problems as tractable MILPs. Finally, partition-based AMD approaches are proposed for noisy discrete-time affine time-invariant models with model-independent parameters and output measurement that are revealed at run time. Specifically, algorithms with fixed and adaptive partitions are proposed, where the latter improves on the performance of the former by allowing the partitions to be optimized. By partitioning the operation region, the problem is solved offline, and partition trees are constructed which can be used as a `look-up table' to determine the optimal input depending on revealed information at run time.
ContributorsNiu, Ruochen (Author) / Yong, Sze Zheng S.Z. (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Zhang, Wenlong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2022
190725-Thumbnail Image.png
Description
Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated

Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated vehicles, a collaborative project between General Motors (GM) and Arizona State University (ASU) has been conducted since 2018. In this dissertation, three main contributions of this project will be presented. First, to explore vehicle dynamics with tire blowout impacts and establish an effective simulation platform for close-loop control performance evaluation, high-fidelity tire blowout models are thoroughly developed by explicitly considering important vehicle parameters and variables. Second, since human cooperation is required to control Level 2/3 partially automated vehicles (PAVs), novel shared steering control schemes are specifically proposed for tire blowout to ensure safe vehicle stabilization via cooperative driving. Third, for Level 4/5 highly automated vehicles (HAVs) without human control, the development of control-oriented vehicle models, controllability study, and automatic control designs are performed based on impulsive differential systems (IDS) theories. Co-simulations Matlab/Simulink® and CarSim® are conducted to validate performances of all models and control designs proposed in this dissertation. Moreover, a scaled test vehicle at ASU and a full-size test vehicle at GM are well instrumented for data collection and control implementation. Various tire blowout experiments for different scenarios are conducted for more rigorous validations. Consequently, the proposed high-fidelity tire blowout models can correctly and more accurately describe vehicle motions upon tire blowout. The developed shared steering control schemes for PAVs and automatic control designs for HAVs can effectively stabilize a vehicle to maintain path following performance in the driving lane after tire blowout. In addition to new research findings and developments in this dissertation, a pending patent for tire blowout detection is also generated in the tire blowout project. The obtained research results have attracted interest from automotive manufacturers and could have a significant impact on driving safety enhancement for automated vehicles upon tire blowout.
ContributorsLi, Ao (Author) / Chen, Yan (Thesis advisor) / Berman, Spring (Committee member) / Kannan, Arunachala Mada (Committee member) / Liu, Yongming (Committee member) / Lin, Wen-Chiao (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
190794-Thumbnail Image.png
Description
As the explorations beyond the Earth's boundaries continue to evolve, researchers and engineers strive to develop versatile technologies capable of adapting to unknown space conditions. For instance, the utilization of Screw-Propelled Vehicles (SPVs) and robotics that utilize helical screws propulsion to transverse planetary bodies is a growing area of interest.

As the explorations beyond the Earth's boundaries continue to evolve, researchers and engineers strive to develop versatile technologies capable of adapting to unknown space conditions. For instance, the utilization of Screw-Propelled Vehicles (SPVs) and robotics that utilize helical screws propulsion to transverse planetary bodies is a growing area of interest. An example of such technology is the Extant Exobiology Life Surveyor (EELS), a snake-like robot currently developed by the NASA Jet Propulsion Laboratory (JPL) to explore the surface of Saturn’s moon, Enceladus. However, the utilization of such a mechanism requires a deep and thorough understanding of screw mobility in uncertain conditions. The main approach to exploring screw dynamics and optimal design involves the utilization of Discrete Element Method (DEM) simulations to assess interactions and behavior of screws when interacting with granular terrains. In this investigation, the Simplified Johnson-Kendall-Roberts (SJKR) model is implemented into the utilized simulation environment to account for cohesion effects similar to what is experienced on celestial bodies like Enceladus. The model is verified and validated through experimental and theoretical testing. Subsequently, the performance characteristics of screws are explored under varying parameters, such as thread depth, number of screw starts, and the material’s cohesion level. The study has examined significant relationships between the parameters under investigation and their influence on the screw performance.
ContributorsAbdelrahim, Mohammad (Author) / Marvi, Hamid (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2023
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023