Matching Items (80)
Filtering by

Clear all filters

155783-Thumbnail Image.png
Description
The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs.

The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs. A rocket engine nozzle with altitude compensation, such as the aerospike, consumes less fuel than a rocket engine with a bell nozzle. Aerospike nozzles are huge and are often difficult to construct and have to be truncated in order to make them feasible for application in a rocket propulsion system. Consequently, truncation of the aerospike leads to pressure loss under the base, which in-turn decreases the overall thrust produced by the rocket nozzle. To overcome this loss, a technique called base bleed is implemented in which a secondary jet is made to flow through the base of the truncated portion. This thesis uses dynamic pressure contour plots to find out the ideal base bleed mass flow rate to avoid base recirculation in 10 %, 20 % and 30 % truncated aerospike nozzles.
ContributorsNagarajan, Venkatraman (Author) / White, Daniel B (Thesis advisor) / Dahm, Werner (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2017
155793-Thumbnail Image.png
Description
Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size,

Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold.

The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.
ContributorsIzadi, Ehsan (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Peralta, Pedro (Committee member) / Chawla, Nikhilesh (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2017
155705-Thumbnail Image.png
Description
Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic

Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.
ContributorsOpie, Saul (Author) / Peralta, Pedro (Thesis advisor) / Loomis, Eric (Committee member) / Oswald, Jay (Committee member) / Rajan, Subramaniam D. (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2017
155810-Thumbnail Image.png
Description
The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake

The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior.

A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial discretization combined with a dynamic time-stepping procedure allowing for up to third order temporal discretization. Two cases of reduced frequency (k = 0:16 and 0:25) for airfoil oscillation are investigated and the change in dynamic stall behavior with change in reduced frequency is studied and documented using flow-fields and aerodynamic coefficients (Drag, Lift and Pitching Moment) with a focus on understanding vortex system dynamics (including formation of secondary vortices) for different reduced frequencies and it’s affect on airfoil aerodynamic characteristics and fatigue life. Transition of the flow over the surface of an airfoil for both undisturbed and disturbed flow cases will also be discussed using Pressure coefficient and Skin Friction coefficient data for a given cycle combined with a wavelet analysis using Morse wavelets in MATLAB.
ContributorsGandhi, Anurag (Author) / Peet, Yulia (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2017
155147-Thumbnail Image.png
Description
Space systems such as communication satellites, earth observation satellites and telescope require accurate pointing to observe fixed targets over prolonged time. These systems typically use reaction wheels to slew the spacecraft and gimballing systems containing motors to achieve precise pointing. Motor based actuators have limited life as they contain moving

Space systems such as communication satellites, earth observation satellites and telescope require accurate pointing to observe fixed targets over prolonged time. These systems typically use reaction wheels to slew the spacecraft and gimballing systems containing motors to achieve precise pointing. Motor based actuators have limited life as they contain moving parts that require lubrication in space. Alternate methods have utilized piezoelectric actuators. This paper presents Shape memory alloys (SMA) actuators for control of a deployable antenna placed on a satellite. The SMAs are operated as a series of distributed linear actuators. These distributed linear actuators are not prone to single point failures and although each individual actuator is imprecise due to hysteresis and temperature variation, the system as a whole achieves reliable results. The SMAs can be programmed to perform a series of periodic motion and operate as a mechanical guidance system that is not prone to damage from radiation or space weather. Efforts are focused on developing a system that can achieve 1 degree pointing accuracy at first, with an ultimate goal of achieving a few arc seconds accuracy. Bench top model of the actuator system has been developed and working towards testing the system under vacuum. A demonstration flight of the technology is planned aboard a CubeSat.
ContributorsSonawane, Nikhil (Author) / Thangavelautham, Jekanthan (Thesis advisor) / Huang, Huei-Ping (Thesis advisor) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2016
149428-Thumbnail Image.png
Description
Passive flow control achieved by surface dimpling can be an effective strategy for reducing drag around bluff bodies - an example of substantial popular interest being the flow around a golf ball. While the general effect of dimples causing a delay of boundary layer separation is well known, the mechanisms

Passive flow control achieved by surface dimpling can be an effective strategy for reducing drag around bluff bodies - an example of substantial popular interest being the flow around a golf ball. While the general effect of dimples causing a delay of boundary layer separation is well known, the mechanisms contributing to this phenomena are subtle and not thoroughly understood. Numerical models offer a powerful approach for studying drag reduction, however simulation strategies are challenged by complex geometries, and in applications the introduction of ad hoc turbulence models which introduce additional uncertainty. These and other factors provide much of the motivation for the current study, which focused on the numerical simulations of the flow over a simplified configuration consisting of a dimpled flat plate. The principal goals of the work are to understand the performance of the numerical methodology, and gain insight into the underlying physics of the flow. Direct numerical simulation of the incompressible Navier-Stokes equations using a fractional step method was employed, with the dimpled flat plate represented using an immersed boundary method. The dimple geometry utilizes a fixed dimple aspect ratio, with dimples arranged in a single spanwise row. The grid sizes considered ranged from approximately 3 to 99 million grid points. Reynolds numbers of 3000 and 4000 based on the inlet laminar boundary layer thickness were simulated. A turbulent boundary layer was induced downstream of the dimples for Reynolds numbers which did not transition for the flow over an undimpled flat plate. First and second order statistics of the boundary layer that develops agree reasonably well with those for turbulent channel flow and flat plate boundary layers in the sublayer and buffer layers, but differ in the outer layer. Inspection of flow visualizations suggest that early transition is promoted by thinning of the boundary layer, initiation of shear layer instabilities over the dimples, flow separation and reattachment, and tripping of the boundary layer at the trailing edge of the dimples.
ContributorsMode, Jeffrey Michael (Author) / Squires, Kyle (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2010
135315-Thumbnail Image.png
Description
The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched

The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched in order to visualize and characterize the microstructure and its features. The samples then undergo strain-controlled fatigue tests for several thousand cycles. Throughout testing, images of the samples are taken at zero and maximum load for DIC analysis. The DIC results can be used to study the local strains of the samples. The DIC analysis performed on the CP-Ti sample and presented in this study will be used to understand how the addition of oxygen in the Ti-O impacts fatigue response. The outcome of this research can be used to develop long-lasting, high strength materials.
ContributorsRiley, Erin Ashland (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / School of Art (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
168311-Thumbnail Image.png
Description
The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement

The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement in the strength of traditional structural materials like Al and Fe based alloys via microstructural refinement. However, the nanocrystalline materials produced using these techniques exhibit poor ductility due to the lack of effective strain hardening mechanisms, and as a result the well-known strength-ductility trade-off persists. To overcome this trade-off, researchers have proposed the concept of heterostructured materials, which are composed of domains ranging in size from a few nanometers to several micrometers. Over the last two decades, there has been intense research on the development of new methods to synthesize heterostructured materials. However, none of these methods is capable of providing precise control over key microstructural parameters such as average grain size, grain morphology, and volume fraction and connectivity of coarse and fine grains. Due to the lack of microstructural control, the relationship between these parameters and the deformation behavior of heterostructured materials cannot be investigated systematically, and hence designing heterostructured materials with optimized properties is currently infeasible. This work aims to address this scientific and technological challenge and is composed of two distinct but interrelated parts. The first part concerns the development of a broadly applicable synthesis method to produce heterostructured metallic films with precisely defined architectures. This method exploits two forms of film growth (epitaxial and Volmer-Weber) to generate heterostructured metallic films. The second part investigates the effect of different microstructural parameters on the deformation behavior of heterostructured metallic films with the aim of elucidating their structure-property relationships. Towards this end, freestanding heterostructured Fe films with different architectures were fabricated and uniaxially deformed using MEMS stages. The results from these experiments are presented and their implications for the mechanical properties of heterostructured materials is discussed.
ContributorsBerlia, Rohit (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Sieradzki, Karl (Committee member) / Peralta, Pedro (Committee member) / Crozier, Peter (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2021
168312-Thumbnail Image.png
Description
Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges,

Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges, two objectives were proposed and achieved in this dissertation: first, to design mechanical metamaterials with metamaterials with selective stiffness and collapsibility; second, to design mechanical metamaterials with in-situ tunable stiffness among positive, zero, and negative.In the first part, triangulated cylinder origami was employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. These deployable structures are flexible in the deploy direction so that it can be easily collapsed along the same way as it was deployed. An origami-inspired mechanical metamaterial was designed for on-demand deployability and selective collapsibility: autonomous deployability from the collapsed state and selective collapsibility along two different paths, with low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields unprecedented load bearing capability in the deploy direction while possessing great deployability and collapsibility. The principle in this prospectus can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. In the second part, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns.
ContributorsZhai, Zirui (Author) / Nian, Qiong (Thesis advisor) / Zhuang, Houlong (Committee member) / Huang, Huei-Ping (Committee member) / Zhang, Wenlong (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2021
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022