Matching Items (55)
Filtering by

Clear all filters

155202-Thumbnail Image.png
Description
A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM)

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the dislocation glide planes without any explicit treatment of the interface geometry which provides a convenient and an appealing means for describing the dislocation. A method for estimating the Peach-Koehler force by the domain form of J-integral is considered. The convergence and accuracy of the method are studied for an edge dislocation interacting with a free surface where analytical solutions are available. The force converges to the exact solution at an optimal rate for linear finite elements. The applicability of the method to dislocation interactions with inclusions is illustrated with a system of Aluminium matrix containing Aluminium-copper precipitates. The effect of size, shape and orientation of the inclusions on an edge dislocation for a difference in stiffness and coefficient of thermal expansion of the inclusions and matrix is considered. The force on the dislocation due to a hard inclusion increased by 8% in approaching the sharp corners of a square inclusion than a circular inclusion of equal area. The dislocation experienced 24% more force in moving towards the edges of a square shaped inclusion than towards its centre. When the areas of the inclusions were halved, 30% less force was exerted on the dislocation. This method was used to analyse interfaces with mismatch strains. Introducing eigenstrains equal to 0.004 to the elastic mismatch increased the force by 15 times for a circular inclusion. The energy needed to move an edge dislocation through a domain filled with circular inclusions is 4% more than that needed for a domain with square shaped inclusions.
ContributorsVeeresh, Pawan (Author) / Oswald, Jay (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
168312-Thumbnail Image.png
Description
Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges,

Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges, two objectives were proposed and achieved in this dissertation: first, to design mechanical metamaterials with metamaterials with selective stiffness and collapsibility; second, to design mechanical metamaterials with in-situ tunable stiffness among positive, zero, and negative.In the first part, triangulated cylinder origami was employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. These deployable structures are flexible in the deploy direction so that it can be easily collapsed along the same way as it was deployed. An origami-inspired mechanical metamaterial was designed for on-demand deployability and selective collapsibility: autonomous deployability from the collapsed state and selective collapsibility along two different paths, with low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields unprecedented load bearing capability in the deploy direction while possessing great deployability and collapsibility. The principle in this prospectus can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. In the second part, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns.
ContributorsZhai, Zirui (Author) / Nian, Qiong (Thesis advisor) / Zhuang, Houlong (Committee member) / Huang, Huei-Ping (Committee member) / Zhang, Wenlong (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2021
168634-Thumbnail Image.png
Description
Ultrasound has become one of the most popular non-destructive characterization tools for soft materials. Compared to conventional ultrasound imaging, quantitative ultrasound has the potential of analyzing detailed microstructural variation through spectral analysis. Because of having a better axial and lateral resolution, and high attenuation coefficient, quantitative high-frequency ultrasound analysis (HFUA)

Ultrasound has become one of the most popular non-destructive characterization tools for soft materials. Compared to conventional ultrasound imaging, quantitative ultrasound has the potential of analyzing detailed microstructural variation through spectral analysis. Because of having a better axial and lateral resolution, and high attenuation coefficient, quantitative high-frequency ultrasound analysis (HFUA) is a very effective tool for small-scale penetration depth application. One of the QUS parameters, peak density had recently shown a promising response with the variation in the soft material microstructure. Acoustic scattering is arguably the most important factor behind different parametric responses in ultrasound spectra. Therefore, to evaluate peak density, acoustic scattering at different frequency levels was investigated. Analytical, computational, and experimental analysis was conducted to observe both single and multiple scattering in different microstructural setups. It was observed that peak density was an effective tool to express different levels of acoustic scattering that occurred through microstructural variation. The feasibility of the peak density parameter was further evaluated in ultrasound C-scan imaging. The study was also extended to detect the relative position of the imaged structure in the direction of wave propagation. For this purpose, a derivative parameter of peak density named mean peak to valley distance (MPVD) was developed to address the limitations of peak density. The study was then focused on detecting soft tissue malignancy. The histology-based computational study of HFUA was conducted to detect various breast tumor (soft tissue) grades. It was observed that both peak density and MPVD parameters could identify tumor grades at a certain level. Finally, the study was focused on evaluating the feasibility of ultrasound parameters to detect asymptotic breast carcinoma i.e., ductal carcinoma in situ (DCIS) in the surgical margin of the breast tumor. In that computational study, breast pathologies were modeled by including all the phases of DCIS. From the similar analysis mentioned above, it was understood that both peak density and MPVD parameters could detect various breast pathologies like ductal hyperplasia, DCIS, and calcification during intraoperative margin analysis. Furthermore, the spectral features of the frequency spectrums from various pathologies also provided significant information to identify them conclusively.
ContributorsPaul, Koushik (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Holloway, Julianne (Committee member) / Li, Xiangjia (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2022
168584-Thumbnail Image.png
Description
Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among

Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among all the statistical methods. This study focuses on the mechanical properties of materials, both static and fatigue, the main engineering field on which this study focuses. This work can be summarized in the following items: First, maintaining the safety of vintage pipelines requires accurately estimating the strength. The objective is to predict the reliability-based strength using nondestructive multimodality surface information. Bayesian model averaging (BMA) is implemented for fusing multimodality non-destructive testing results for gas pipeline strength estimation. Several incremental improvements are proposed in the algorithm implementation. Second, the objective is to develop a statistical uncertainty quantification method for fatigue stress-life (S-N) curves with sparse data.Hierarchical Bayesian data augmentation (HBDA) is proposed to integrate hierarchical Bayesian modeling (HBM) and Bayesian data augmentation (BDA) to deal with sparse data problems for fatigue S-N curves. The third objective is to develop a physics-guided machine learning model to overcome limitations in parametric regression models and classical machine learning models for fatigue data analysis. A Probabilistic Physics-guided Neural Network (PPgNN) is proposed for probabilistic fatigue S-N curve estimation. This model is further developed for missing data and arbitrary output distribution problems. Fourth, multi-fidelity modeling combines the advantages of low- and high-fidelity models to achieve a required accuracy at a reasonable computation cost. The fourth objective is to develop a neural network approach for multi-fidelity modeling by learning the correlation between low- and high-fidelity models. Finally, conclusions are drawn, and future work is outlined based on the current study.
ContributorsChen, Jie (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Mignolet, Marc (Committee member) / Ren, Yi (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2022
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
168355-Thumbnail Image.png
Description
Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to

Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to the hierarchical uncertainties associated with their complex microstructure at different length scales. Such uncertainties also exist in disordered hyperuniform systems that are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. An explicit mixture random field (MRF) model is proposed to characterize and reconstruct multi-phase stochastic material property and microstructure simultaneously, where no additional tuning step nor iteration is needed compared with other stochastic optimization approaches such as the simulated annealing. The proposed method is shown to have ultra-high computational efficiency and only requires minimal imaging and property input data. Considering microscale uncertainties, the material reliability will face the challenge of high dimensionality. To deal with the so-called “curse of dimensionality”, efficient material reliability analysis methods are developed. Then, the explicit hierarchical uncertainty quantification model and efficient material reliability solvers are applied to reliability-based topology optimization to pursue the lightweight under reliability constraint defined based on structural mechanical responses. Efficient and accurate methods for high-resolution microstructure and hyperuniform microstructure reconstruction, high-dimensional material reliability analysis, and reliability-based topology optimization are developed. The proposed framework can be readily incorporated into ICME for probabilistic analysis, discovery of novel disordered hyperuniform materials, material design and optimization.
ContributorsGao, Yi (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Pan, Rong (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2021
189221-Thumbnail Image.png
Description
The relationships between the properties of materials and their microstructures have been a central topic in materials science. The microstructure-property mapping and numerical failure prediction are critical for integrated computational material engineering (ICME). However, the bottleneck of ICME is the lack of a clear understanding of the failure mechanism as

The relationships between the properties of materials and their microstructures have been a central topic in materials science. The microstructure-property mapping and numerical failure prediction are critical for integrated computational material engineering (ICME). However, the bottleneck of ICME is the lack of a clear understanding of the failure mechanism as well as an efficient computational framework. To resolve these issues, research is performed on developing novel physics-based and data-driven numerical methods to reveal the failure mechanism of materials in microstructure-sensitive applications. First, to explore the damage mechanism of microstructure-sensitive materials in general loading cases, a nonlocal lattice particle model (LPM) is adopted because of its intrinsic ability to handle the discontinuity. However, the original form of LPM is unsuitable for simulating nonlinear behavior involving tensor calculation. Therefore, a damage-augmented LPM (DLPM) is proposed by introducing the concept of interchangeability and bond/particle-based damage criteria. The proposed DLPM successfully handles the damage accumulation behavior in general material systems under static and fatigue loading cases. Then, the study is focused on developing an efficient physics-based data-driven computational framework. A data-driven model is proposed to improve the efficiency of a finite element analysis neural network (FEA-Net). The proposed model, i.e., MFEA-Net, aims to learn a more powerful smoother in a multigrid context. The learned smoothers have good generalization properties, and the resulted MFEA-Net has linear computational complexity. The framework has been applied to efficiently predict the thermal and elastic behavior of composites with various microstructural fields. Finally, the fatigue behavior of additively manufactured (AM) Ti64 alloy is analyzed both experimentally and numerically. The fatigue experiments show the fatigue life is related with the contour process parameters, which can result in different pore defects, surface roughness, and grain structures. The fractography and grain structures are closely observed using scanning electron microscope. The sample geometry and defect/crack morphology are characterized through micro computed tomography (CT). After processing the pixel-level CT data, the fatigue crack initiation and growth behavior are numerically simulated using MFEA-Net and DLPM. The experiments and simulation results provided valuable insights in fatigue mechanism of AM Ti64 alloy.
ContributorsMeng, Changyu (Author) / Liu, Yongming (Thesis advisor) / Hoover, Christian (Committee member) / Li, Lin (Committee member) / Peralta, Pedro (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2023
Description
The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters

The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters and achieves high accuracy (0.97) and robustness (F1 score of 0.98). Leveraging CT images for characterization and data extraction from the CT-images built STL files, the model effectively detects crack initiation sites while minimizing false positives and negatives. Data augmentation techniques, including SMOTE+Tomek Links, are employed to address imbalanced data distributions and improve model performance. This study proposes the Probabilistic Physics-guided Neural Network 2.0 (PPgNN) for probabilistic fatigue life estimation. The presented approach overcomes the limitations of classical regression machine models commonly used to analyze fatigue data. One key advantage of the proposed method is incorporating known physics constraints, resulting in accurate and physically consistent predictions. The efficacy of the model is demonstrated by training the model with multiple fatigue S-N curve data sets from open literature with relevant morphological data and tested using the data extracted from CT-built STL files. The results illustrate that PPgNN 2.0 is a flexible and robust model for predicting fatigue life and quantifying uncertainties by estimating the mean and standard deviation of the fatigue life. The loss function that trains the proposed model can capture the underlying distribution and reduce the prediction error. A comparison study between the performance of neural network models highlights the benefits of physics-guided learning for fatigue data analysis. The proposed model demonstrates satisfactory learning capacity and generalization, providing accurate fatigue life predictions to unseen examples. An elastic-plastic Finite Element Model (FEM) is developed in the second part to assess pipeline integrity, focusing on burst pressure estimation in high-pressure gas pipelines with interactive corrosion defects. The FEM accurately predicts burst pressure and evaluates the remaining useful life by considering the interaction between corrosion defects and neighboring pits. The FEM outperforms the well-known ASME-B31G method in handling interactive corrosion threats.
ContributorsBalamurugan, Rakesh (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2023
189290-Thumbnail Image.png
Description
In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni

In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni metals, while Gibeon is primarily composed of Fe-Ni metals with scattered inclusions of graphite and troilite. The OCs were investigated to understand their response to compressive loading, using a three-dimensional (3-D) Digital Image Correlation (DIC) technique to measure full-field deformation and strain during compression. The DIC data were also used to identify the effects of mineralogical and structural heterogeneity on crack formation and growth. Even though Aba Panu and Viñales are mineralogically similar and are both classified as L ordinary chondrites, they exhibit differences in compressive strengths due to variations in chemical compositions, microstructure, and the presence of cracks and shock veins. DIC data of Aba Panu and Viñales show a brittle failure mechanism, consistent with the crack formation and growth from pre-existing microcracks and porosity. In contrast, the Fe-Ni phases of the Gibeon meteorite deform plastically without rupture during compression, whereas during tension, plastic deformations followed by necking lead to final failure. The Gibeon DIC results showed strain concentration in the tensile gauge region along the sample edge, resulting in the initiation of new damage surfaces that propagated perpendicular to the loading direction. Finally, an in-situ low-temperature testing method of iron meteorites was developed to study the response of their unique microstructure and failure mechanism.
ContributorsRabbi, Md Fazle (Author) / Chattopadhyay, Aditi (Thesis advisor) / Garvie, Laurence A.J. (Thesis advisor) / Liu, Yongming (Committee member) / Fard, Masoud Yekani (Committee member) / Cotto-Figueroa, Desiree (Committee member) / Arizona State University (Publisher)
Created2023
187523-Thumbnail Image.png
Description
The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in

The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in engineering applications. With the possibility of manufacturing complex cellular shapes using additive manufacturing technologies, there is an opportunity to explore new topologies that improve energy absorption performance. This thesis aims to systematically understand the relationships between four key elements: (i) unit cell topology, (ii) material composition, (iii) relative density, and (iv) fields; and energy absorption behavior, and then leverage this understanding to develop, implement and validate a methodology to design the ideal cellular structure energy absorber. After a review of the literature in the domain of additively manufactured cellular materials for energy absorption, results from quasi-static compression of six cellular structures (hexagonal honeycomb, auxetic and Voronoi lattice, and diamond, Gyroid, and Schwarz-P) manufactured out of AlSi10Mg and Nylon-12. These cellular structures were compared to each other in the context of four design-relevant metrics to understand the influence of cell design on the deformation and failure behavior. Three new and revised metrics for energy absorption were proposed to enable more meaningful comparisons and subsequent design selection. Triply Periodic Minimal Surface (TPMS) structures were found to have the most promising overall performance and formed the basis for the numerical investigation of the effect of fields on the energy absorption performance of TPMS structures. A continuum shell-based methodology was developed to analyze the large deformation behavior of field-driven variable thickness TPMS structures and validated against experimental data. A range of analytical and stochastic fields were then evaluated that modified the TPMS structure, some of which were found to be effective in enhancing energy absorption behavior in the structures while retaining the same relative density. Combining findings from studies on the role of cell geometry, composition, relative density, and fields, this thesis concludes with the development of a design framework that can enable the formulation of cellular material energy absorbers with idealized behavior.
ContributorsShinde, Mandar (Author) / Bhate, Dhruv (Thesis advisor) / Peralta, Pedro (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023