Matching Items (43)
Filtering by

Clear all filters

157959-Thumbnail Image.png
Description
It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with

It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with excitations of surface plasmon polaritons (SPPs)/surface phonon polaritons (SPhPs), magnetic polaritons (MP), and hyperbolic modes (HM), have been studied to further improve near-field radiative heat flux and conversion efficiency. On the other hand, near-field experimental demonstration between planar surfaces has been limited due to the extreme challenge in the vacuum gap control as well as the parallelism.

The main objective of this work is to experimentally study the near-field radiative transfer and the excitation of resonance modes by designing nanostructured thin films separated by nanometer vacuum gaps. In particular, the near-field radiative heat transfer between two parallel plates of intrinsic silicon wafers coated with a thin film of aluminum nanostructure is investigated. In addition, theoretical studies about the effects of different physical mechanisms such as SPhP/SPP, MPs, and HM on near-field radiative transfer in various nanostructured metamaterials are conducted particularly for near-field TPV applications. Numerical simulations are performed by using multilayer transfer matrix method, rigorous coupled wave analysis, and finite difference time domain techniques incorporated with fluctuational electrodynamics. The understanding gained here will undoubtedly benefit the spectral control of near-field thermal radiation for energy-harvesting applications like thermophotovoltaic energy conversion and radiation-based thermal management.
ContributorsSabbaghi, Payam (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
157558-Thumbnail Image.png
Description
This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and

This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and proven to be a tedious process. To improve on this technique, the E-beam system was modified by adding a load lock and transfer line to perform the multi-angle deposition and in situ oxidation in the load lock without breaking the vacuum of the main chamber. Bilayer photolithography process was used to prepare a pattern for double angle deposition for the STJ. The overlap length could be easily controlled by varying the deposition angles. The low-temperature resistivity measurement and scanning electron microscope (SEM) characterization showed that the deposited films were good. However, I-V measurement for tunnel junction did not give expected results for the quality of the fabricated STJs. The main objective of modifying the E-beam system for multiple angle deposition was achieved. It can be used for any application that requires angular deposition. The motivation for the project was to set up a system that can fabricate a device that can be used as a phonon spectrometer for phononic crystals. Future work will include improving the quality of the STJ and fabricating an STJs on both sides of a silicon substrate using a 4-angle deposition.
ContributorsRana, Ashish (Author) / Wang, Robert Y (Thesis advisor) / Newman, Nathan (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157740-Thumbnail Image.png
Description
Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat

Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat transfer rate can be further increased by increasing the nucleation and by optimally ‘refreshing’ the surface via droplet shedding. Softening of surfaces favor the former while having an adverse effect on the latter. This optimization problem is addressed by investigating how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. The results obtained by combining droplet induced surface deformation with finite element model show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate.

On the other hand, interactions between droplet and polymer leading to polymer swelling can be used to develop breathable wearables for use in chemically harsh environments. Chemical aerosols are hazardous and conventional protective measures include impermeable barriers which limit the thermoregulation. To solve this, a solution is proposed consisting of a superabsorbent polymer developed to selectively absorb these chemicals and closing the pores in the fabric. Starting from understanding and modeling the droplet induced swelling in elastomers, the extent and topological characteristic of swelling is shown to depend on the relative comparison of the polymer and aerosol geometries. Then, this modeling is extended to a customized polymer, through a simplified characterization paradigm. In that, a new method is proposed to measure the swelling parameters of the polymer-solvent pair and develop a validated model for swelling. Through this study, it is shown that for this polymer, the concentration-dependent diffusion coefficient can be measured through gravimetry and Poroelastic Relaxation Indentation, simplifying the characterization effort. Finally, this model is used to design composite fabric. Specifically, using model results, the SAP geometry, base fabric design, method of composition is optimized, and the effectiveness of the composite fabric highlighted in moderate-to-high concentrations over short durations.
ContributorsPhadnis, Akshay (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Oswald, Jay (Committee member) / Burgin, Timothy (Committee member) / Arizona State University (Publisher)
Created2019
158064-Thumbnail Image.png
Description
Phononic crystals are artificially engineered materials that can forbid phonon propagation in a specific frequency range that is referred to as a “phononic band gap.” Phononic crystals that have band gaps in the GHz to THz range can potentially enable sophisticated control over thermal transport with “phononic devices”. Calculations of

Phononic crystals are artificially engineered materials that can forbid phonon propagation in a specific frequency range that is referred to as a “phononic band gap.” Phononic crystals that have band gaps in the GHz to THz range can potentially enable sophisticated control over thermal transport with “phononic devices”. Calculations of the phononic band diagram are the standard method of determining if a given phononic crystal structure has a band gap. However, calculating the phononic band diagram is a computationally expensive and time-consuming process that can require sophisticated modeling and coding. In addition to this computational burden, the inverse process of designing a phononic crystal with a specific band gap center frequency and width is a challenging problem that requires extensive trial-and-error work.

In this dissertation, I first present colloidal nanocrystal superlattices as a new class of three-dimensional phononic crystals with periodicity in the sub-20 nm size regime using the plane wave expansion method. These calculations show that colloidal nanocrystal superlattices possess phononic band gaps with center frequencies in the 102 GHz range and widths in the 101 GHz range. Varying the colloidal nanocrystal size and composition provides additional opportunities to fine-tune the phononic band gap. This suggests that colloidal nanocrystal superlattices are a promising platform for the creation of high frequency phononic crystals.

For the next topic, I explore opportunities to use supervised machine learning for expedited discovery of phononic band gap presence, center frequency and width for over 14,000 two-dimensional phononic crystal structures. The best trained model predicts band gap formation, center frequencies and band gap widths, with 94% accuracy and coefficients of determination (R2) values of 0.66 and 0.83, respectively.

Lastly, I expand the above machine learning approach to use machine learning to design a phononic crystal for a given set of phononic band gap properties. The best model could predict elastic modulus of host and inclusion, density of host and inclusion, and diameter-to-lattice constant ratio for target center and width frequencies with coefficients of determinations of 0.94, 0.98, 0.94, 0.71, and 0.94 respectively. The high values coefficients of determination represents great opportunity for phononic crystal design.
ContributorsSadat, Seid Mohamadali (Author) / Wang, Robert Y (Thesis advisor) / Huang, Huei-Ping (Committee member) / Ankit, Kumar (Committee member) / Wang, Liping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2020
158810-Thumbnail Image.png
Description
Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be

Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be implemented in these areas due to their centralized large-scale design. In addition, these methods require intensive maintenance, and sometimes do not operate in high salinity feedwater. Membrane distillation (MD) is one technology that can potentially overcome these challenges and has received increasing attention in the last 15 years. The driving force of MD is the difference in vapor pressure across a microporous hydrophobic membrane. Compared to conventional membrane-based technologies, MD can treat high concentration feedwater, does not need intensive pretreatment, and has better fouling resistance. More importantly, MD operates at low feed temperatures and so it can utilize low–grade heat sources such as solar energy for its operation. While the integration of solar energy and MD was conventionally indirect (i.e. by having two separate systems: a solar collector and an MD module), recent efforts were focused on direct integration where the membrane itself is integrated within a solar collector aiming to have a more compact, standalone design suitable for small-scale applications. In this dissertation, a comprehensive review of these efforts is discussed in Chapter 2. Two novel direct solar-powered MD systems were proposed and investigated experimentally: firstly, a direct contact MD (DCMD) system was designed by placing capillary membranes within an evacuated tube solar collector (ETC) (Chapter 3), and secondly, a submerged vacuum MD (S-VMD) system that uses circulation and aeration as agitation techniques was investigated (Chapter 4). A maximum water production per absorbing area of 0.96 kg·m–2·h–1 and a thermal efficiency of 0.51 were achieved. A final study was conducted to investigate the effect of ultrasound in an S-VMD unit (Chapter 5), which significantly enhanced the permeate flux (up to 24%) and reduced the specific energy consumption (up to 14%). The results add substantially to the understanding of integrating ultrasound with different MD processes.
ContributorsBamasag, Ahmad (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Wang, Liping (Committee member) / Bocanegra, Luis (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
158600-Thumbnail Image.png
Description
Solar energy as a limitless source of energy all around the globe has been difficult to harness. This is due to the low direct solar-electric conversion efficiency which has an upper limit set to the Shockley-Queisser limit. Solar thermophotovoltaics (STPV) is a much more efficient solar energy harvesting technology as

Solar energy as a limitless source of energy all around the globe has been difficult to harness. This is due to the low direct solar-electric conversion efficiency which has an upper limit set to the Shockley-Queisser limit. Solar thermophotovoltaics (STPV) is a much more efficient solar energy harvesting technology as it has the potential to overcome the Shockley-Queisser limit, by converting the broad-spectrum solar irradiation into narrowband infrared spectrum radiation matched to the PV cell. Despite the potential to surpass the Shockley-Queisser limit, very few experimental results have reported high system-level efficiency.

The objective of the thesis is to study the STPV conversion performance with selective metafilm absorber and emitter paired with a commercial GaSb cell at different solar concentrations. Absorber and Emitter metafilm thickness was optimized and fabricated. The optical properties of fabricated metafilms showed good agreement with the theoretically determined properties. The experimental setup was completed and validated by measuring the heat transfer rate across the test setup and comparing it with theoretical calculations. A novel method for maintaining the gap between the emitter and PV cell was developed using glass microspheres. Theoretical calculations show that the use of the glass of microspheres introduces negligible conduction loss across the gap compared to the radiation heat transfer, which is confirmed by experimental heat transfer measurement. This research work will help enhance the fundamental understanding and the development of the high-efficiency solar thermophotovoltaic system.
ContributorsNayal, Avinash (Author) / Wang, Liping (Thesis advisor) / Wang, Robert (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2020
158380-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the existing photovoltaic temperature models. This thesis work details the investigation, motivation, development, validation, and implementation of a transient photovoltaic module temperature model based on a weighted moving-average of steady-state temperature predictions.

This thesis work first details the literature review of steady-state and transient models that are commonly used by PV investigators in performance modeling. Attempts to develop models capable of accounting for the inherent transient thermal behavior of PV modules are shown to improve on the accuracy of the steady-state models while also significantly increasing the computational complexity and the number of input parameters needed to perform the model calculations.

The transient thermal model development presented in this thesis begins with an investigation of module thermal behavior performed through finite-element analysis (FEA) in a computer-aided design (CAD) software package. This FEA was used to discover trends in transient thermal behavior for a representative PV module in a timely manner. The FEA simulations were based on heat transfer principles and were validated against steady-state temperature model predictions. The dynamic thermal behavior of PV modules was determined to be exponential, with the shape of the exponential being dependent on the wind speed and mass per unit area of the module.

The results and subsequent discussion provided in this thesis link the thermal behavior observed in the FEA simulations to existing steady-state temperature models in order to create an exponential weighting function. This function can perform a weighted average of steady-state temperature predictions within 20 minutes of the time in question to generate a module temperature prediction that accounts for the inherent thermal mass of the module while requiring only simple input parameters. Validation of the modeling method presented here shows performance modeling accuracy improvement of 0.58%, or 1.45°C, over performance models relying on steady-state models at narrow data intervals.
ContributorsPrilliman, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158194-Thumbnail Image.png
Description
Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel

Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel and oxidizer in supersonic combustors. Due to low residence times and varying length scales, providing insight through physical experiments is both technically challenging and sometimes unfeasible. Numerical simulations can help provide detailed insight and aid in the engineering design of devices that can harness these physical phenomena.

In this research, computational methods were developed to accurately simulate phase interfaces in compressible fluid flows with a focus on targeting primary atomization. Novel numerical methods which treat the phase interface as a discontinuity, and as a smeared region were developed using low-dissipation, high-order schemes. The resulting methods account for the effects of compressibility, surface tension and viscosity. To aid with the varying length scales and high-resolution requirements found in atomization applications, an adaptive mesh refinement (AMR) framework is used to provide high-resolution only in regions of interest. The developed methods were verified with test cases involving strong shocks, high density ratios, surface tension effects and jumps in the equations of state, in one-, two- and three dimensions, obtaining good agreement with theoretical and experimental results. An application case of the primary atomization of a liquid jet injected into a Mach 2 supersonic crossflow of air is performed with the methods developed.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Peet, Yulia (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
157528-Thumbnail Image.png
Description
Demand for green energy alternatives to provide stable and reliable energy

solutions has increased over the years which has led to the rapid expansion of global

markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest

amongst these technologies is the Bifacial PV modules, which harvests incident radiation

from both sides of

Demand for green energy alternatives to provide stable and reliable energy

solutions has increased over the years which has led to the rapid expansion of global

markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest

amongst these technologies is the Bifacial PV modules, which harvests incident radiation

from both sides of the module. The overall power generation can be significantly increased

by using these bifacial modules. The purpose of this research is to investigate and maximize

the effect of back reflectors, designed to increase the efficiency of the module by utilizing

the intercell light passing through the module to increase the incident irradiance, on the

energy output using different profiles placed at varied distances from the plane of the array

(POA). The optimum reflector profile and displacement of the reflector from the module

are determined experimentally.

Theoretically, a 60-cell bifacial module can produce 26% additional energy in

comparison to a 48-cell bifacial module due to the 12 excess cells found in the 60-cell

module. It was determined that bifacial modules have the capacity to produce additional

energy when optimized back reflectors are utilized. The inverted U reflector produced

higher energy gain when placed at farther distances from the module, indicating direct

dependent proportionality between the placement distance of the reflector from the module

and the output energy gain. It performed the best out of all current construction geometries

with reflective coatings, generating more than half of the additional energy produced by a

densely-spaced 60-cell benchmark module compared to a sparsely-spaced 48-cell reference

module.ii

A gain of 11 and 14% was recorded on cloudy and sunny days respectively for the

inverted U reflector. This implies a reduction in the additional cells of the 60-cell module

by 50% can produce the same amount of energy of the 60-cell module by a 48-cell module

with an inverted U reflector. The use of the back reflectors does not only affect the

additional energy gain but structural and land costs. Row to row spacing for bifacial

systems(arrays) is reduced nearly by half as the ground height clearance is largely

minimized, thus almost 50% of height constraints for mounting bifacial modules, using

back reflectors resulting in reduced structural costs for mounting of bifacial modules
ContributorsMARTIN, PEDRO JESSE (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021