Matching Items (7)
Filtering by

Clear all filters

150153-Thumbnail Image.png
Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
ContributorsShortridge, Randall (Author) / Chen, Kang Ping (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Huang, Huei-Ping (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2011
151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
136525-Thumbnail Image.png
Description
The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two spool gas turbine engine. The code was then compared to an ideal case engine with predictable values. It was found to have less than a 3 percent error for these parameters, which included optimal net work produced, optimal overall pressure ratio, and maximum pressure ratio. The modeling system was then run through a parametric analysis. In the first case, the bypass ratio was set to 0 and the freestream Mach number was set to 0. The second case was with a bypass ratio of 0 and fresstream Mach number of 0.85. The third case was with a bypass ratio of 5 and freestream Mach number of 0. The fourth case was with a bypass ratio of 5 and fresstream Mach number of 0.85. Each of these cases was run at various overall pressure ratios and maximum Temperatures of 1500 K, 1600 K and 1700 K. The results modeled the behavior that was expected. As the freestream Mach number was increased, the thrust decreased and the thrust specific fuel consumption increased, corresponding to an increase in total pressure at the combustor inlet. It was also found that the thrust was increased and the thrust specific fuel consumption decreased as the bypass ratio was increased. These results also make sense as there is less airflow passing through the engine core. Finally the engine was compared to two real engines. Both of which are General Electric G6 series engines. For the 80C2A3 engine, the percent difference between thrust and thrust specific fuel consumption was less than five percent. For the 50B, the thrust was below a two percent difference, but the thrust specific fuel consumption clearly provided inaccurate results. This could be caused by the lack of inputs provided by General Electric. The amount of fuel injected is largely dependent on the maximum temperature which is not available to the public. Overall, the code produces comparable results to real engines and can display how isolating and modifying a certain parameter effects engine performance.
ContributorsCook, Rachel Nicole (Author) / Dahm, Werner (Thesis director) / Lee, Taewoo (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
149577-Thumbnail Image.png
Description
This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and

This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.
ContributorsKhatri, Jaidev (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2011
132111-Thumbnail Image.png
Description
An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD)

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD) and wind tunnel study was performed to study the effects of spoilers on vehicle aerodynamics and performance. Vehicle aerodynamics is geometry dependent, meaning what applies to one car may or may not apply on another. So, the Scion FRS was chosen as the test vehicle because it is has the “classic” sports car configuration with a long hood, short rear, and 2+2 passenger cabin while also being widely sold with a plethora of aftermarket aerodynamic modifications available. Due to computing and licensing restrictions, only a 2D CFD simulation was performed in ANSYS Fluent 19.1. A surface model of the centerline of the car was created in SolidWorks and imported into ANSYS, where the domain was created. A mesh convergence study was run to determine the optimum mesh size, and Realizable k-epsilon was the chosen physics model. The wind tunnel lacked equipment to record quantifiable data, so the wind tunnel was utilized for flow visualization on a 1/24 scale car model to compare with the CFD.

0° spoilers reduced the wake area behind the car, decreasing pressure drag but also decreasing underbody flow, causing a reduction in drag and downforce. Angled spoilers increased the wake area behind the car, increasing pressure drag but also increasing underbody flow, causing an increase in drag and downforce. Longer spoilers increased these effects compared to shorter spoilers, and short spoilers at different angles did not create significantly different effects. 0° spoilers would be best suited for cases that prioritize fuel economy or straight-line acceleration and speed due to the drag reduction, while angled spoilers would be best suited for cars requiring downforce. The angle and length of spoiler would depend on the downforce needed, which is dependent on the track.
ContributorsNie, Alexander (Author) / Wells, Valana (Thesis director) / Huang, Huei-Ping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
134483-Thumbnail Image.png
Description
Winglets and wingtip structures have been prominent in commercial aircraft design in the past few decades. These designs are known to reduce the induced drag on an aircraft wing, thus increasing its overall fuel efficiency. Several different winglet designs exist, and little reason is offered as to why different winglet

Winglets and wingtip structures have been prominent in commercial aircraft design in the past few decades. These designs are known to reduce the induced drag on an aircraft wing, thus increasing its overall fuel efficiency. Several different winglet designs exist, and little reason is offered as to why different winglet designs are used in practice on different aircraft, especially those of variable range. This research tests existing winglets (no winglet, raked winglet, flat plate winglet, blended winglet, and wingtip fence) on a span-constrained wing planform design both computationally and in the wind tunnel. While computational tests using a vortex lattice code indicate that the wingtip fence minimizes induced drag and maximizes lift to drag ratio in most cases, wind tunnel tests show that at different lift coefficients and angles of attack, the raked winglet and blended winglet optimize the aerodynamic efficiency at incompressible flow velocities. Applying the wing aerodynamic data to existing variable range commercial aircraft, mission performance analysis is run on a Bombardier CRJ200, Airbus A320, and Airbus A340-300. By comparing flight lift coefficients in cruise for these aircraft to the lift coefficients at which winglets minimize drag in compressible flows, optimal winglet designs are chosen. It is found that the short range CRJ200 is best equipped with a flat plate or blended winglet, the medium range A320 can reduce drag with either a wingtip fence, raked winglet, or blended winglet, and the long range A340 performs best with a flat plate, blended, or raked winglet. Overall, despite the discrepancy in winglet selection depending on which experimental results are used, it is clear that addition of a winglet to a span-constrained wing is beneficial in that it reduces induced drag and therefore increases overall fuel efficiency.
ContributorsOremland, Joshua Elan (Author) / Wells, Valana (Thesis director) / Mertz, Benjamin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161953-Thumbnail Image.png
Description
Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets, ligaments, and droplets helps understand the flow physics and fluid

Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets, ligaments, and droplets helps understand the flow physics and fluid breakup mechanism, aids in predicting droplet formation, improves atomization modeling and spray combustion. The thesis focuses on developing a new method to identify these liquid structures and devise a sphere model for droplet size prediction by augmenting concepts of linear algebra, rigid body dynamics, computational fluid mechanics, scientific computing, and visualization. The first part of the thesis presents a new approach to classify the fluid structures based on their length scales along their principal axes. This approach provides a smooth tracking of the structures' generation history instead of relying on high-speed video imaging of the experiment. A droplet is observed to have three equal length scales, while a ligament has one and a sheet has two significantly larger length scales. The subsequent breakup of ligaments and droplets depends on the atomizer geometry, operating conditions, and fluid physical properties. While it's straightforward to apply DNS and estimate this breakup, it is proven to be computationally expensive. The second part of the thesis deals with developing a sphere model that would essentially reduce this computational cost. After identifying a liquid structure, the sphere model utilizes the level set data in the domain to quantify the structure using spheres. By using the evolution information of these spheres as they separate from each other, the subsequent droplet size distribution can be evaluated.
ContributorsKashetty, Sindhuja (Author) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2021