Matching Items (6)
Filtering by

Clear all filters

157436-Thumbnail Image.png
Description
The universe since its formation 13.7 billion years ago has undergone many changes. It began with expanding and cooling down to a temperature low enough for formation of atoms of neutral Hydrogen and Helium gas. Stronger gravitational pull in certain regions caused some regions to be denser and hotter than

The universe since its formation 13.7 billion years ago has undergone many changes. It began with expanding and cooling down to a temperature low enough for formation of atoms of neutral Hydrogen and Helium gas. Stronger gravitational pull in certain regions caused some regions to be denser and hotter than others. These regions kept getting denser and hotter until they had centers hot enough to burn the hydrogen and form the first stars, which ended the Dark Ages. These stars did not live long and underwent violent explosions. These explosions and the photons from the stars caused the hydrogen gas around them to ionize. This went on until all the hydrogen gas in the universe was ionized. This period is known as Epoch Of Reionization. Studying the Epoch Of Reionization will help understand the formation of these early stars, the timeline of the reionization and the formation of the stars and galaxies as we know them today. Studying the radiations from the 21cm line in neutral hydrogen, redshifted to below 200MHz can help determine details such as velocity, density and temperature of these early stars and the media around them.

The EDGES program is one of the many programs that aim to study the Epoch of Reionization. It is a ground-based project deployed in Murchison Radio-Astronomy Observatory in Western Australia. At ground level the Radio Frequency Interference from the ionosphere and various man-made transmitters in the same frequency range as the EDGES receiver make measurements, receiver design and extraction of useful data from received signals difficult. Putting the receiver in space can help majorly escape the RFI. The EDGES In Space is a proposed project that aims at designing a receiver similar to the EDGES receiver but for a cubesat.

This thesis aims at designing a prototype receiver that is similar in architecture to the EDGES low band receiver (50-100MHz) but is significantly smaller in size (small enough to fit on a PCB for a cubesat) while keeping in mind different considerations that affect circuit performance in space.
ContributorsJambagi, Ashwini (Author) / Mauskopf, Philip (Thesis advisor) / Aberle, James T., 1961- (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2019
156309-Thumbnail Image.png
Description
The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the

The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation.

The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.

21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively

Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.

This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and

cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future

arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
ContributorsKolopanis, Matthew John (Author) / Bowman, Judd (Thesis advisor) / Mauskopf, Philip (Thesis advisor) / Lunardini, Cecilia (Committee member) / Chamberlin, Ralph (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2018
134320-Thumbnail Image.png
Description
The following paper discusses the validation of the TolTEC optical design along with a progress report regarding the design of the optical mounting system. Solidworks and Zemax were used in conjunction to model the proposed optics designs. The final optical design was selected through extensive CAD modeling and testing within

The following paper discusses the validation of the TolTEC optical design along with a progress report regarding the design of the optical mounting system. Solidworks and Zemax were used in conjunction to model the proposed optics designs. The final optical design was selected through extensive CAD modeling and testing within the Large Millimeter Telescope receiver room. The TolTEC optics can be divided into two arrays, one comprised of the warm mirrors and the second, cryogenically-operated cold mirrors. To ensure structural stability and optical performance, the mechanical design of these systems places a heavy emphasis on rigidity. This is done using a variety of design techniques that restrict motion along the necessary degrees of freedom and maximize moment of inertia while minimizing weight. Work will resume on this project in the Fall 2017 semester.
ContributorsKelso, Rhys Partain (Author) / Mauskopf, Philip (Thesis director) / Groppi, Christopher (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
187398-Thumbnail Image.png
Description
Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort

Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort to further constrain small CMB anisotropies in both temperature and polarization. As a result, detailed investigations into lesser-known processes of the universe are now becoming possible. Here I present work on the millimeter-wavelength analysis of z ≈ 1 quiescent galaxy samples, whose conspicuous quenching of star formation is likely the result of active galactic nuclei (AGN) accretion onto supermassive black holes. Such AGN feedback would heat up a galaxy's surrounding circumgalactic medium (CGM). Obscured by signal from cold dust, I isolate the thermal Sunyaev-Zel'dovich effect, a CMB temperature anisotropy produced by hot ionized gas, to measure the CGM's average thermal energy and differentiate between AGN accretion models. I find a median thermal energy that best corresponds with moderate to high levels of AGN feedback. In addition, the radial profile of cold dust associated with the galaxy samples appears to be consistent with large-scale clustering of the universe. In the endeavor of increasingly efficient millimeter-wave detectors, I also describe the design process for novel multichroic dual-polarization antennas. Paired with extended hemispherical lenslets, simulations of these superconducting antennas show the potential to match or exceed performance compared to similar designs already in use. A prototype detector array, with dual-bowtie and hybrid trapezoidal antennas coupled to microwave kinetic inductance detectors (MKIDs) has been made and is under preparation to be tested in the near future. Finally, I also present my contributions to the cryogenic readout design of the Ali CMB Polarization Telescope (AliCPT), a large-scale CMB telescope geared towards searching the Northern Hemisphere sky for a unique `B-mode' polarization expected to be produced by primordial gravitational waves. Cryogenic readout is responsible for successful interfacing between room temperature electronics and sensitive detectors operating on AliCPT's sub-Kelvin temperature focal plane. The development of millimeter-wave instruments and future endeavors show great potential for the overall scientific community.
ContributorsMeinke, Jeremy (Author) / Mauskopf, Philip (Thesis advisor) / Alarcon, Ricardo (Committee member) / Scannapieco, Evan (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2023
157727-Thumbnail Image.png
Description
This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras,

This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras, whose science goals will soon drive the pixel counts of sub-mm detector arrays from the kilopixel to the megapixel regime. The in-flight performance of the readout system was verified during the summer, 2018 flight of ASI's OLIMPO balloon-borne telescope, from Svalbard, Norway. This was the first flight for both LEKID detectors and their associated readout electronics. In winter 2019/2020, the system will fly on NASA's long-duration Balloon Borne Large Aperture Submillimeter Telescope (BLAST-TNG), a sub-mm polarimeter which will map the polarized thermal emission from cosmic dust at 250, 350 and 500 microns (spatial resolution of 30", 41" and 59"). It is also a core system in several upcoming ground based mm-wave instruments which will soon observe at the 50 m Large Millimeter Telescope (e.g., TolTEC, SuperSpec, MUSCAT), at Sierra Negra, Mexico.

The design and verification of the FPGA firmware, software and electronics which make up the system are described in detail. Primary system requirements are derived from the science objectives of BLAST-TNG, and discussed in the context of relevant size, weight, power and cost (SWaP-C) considerations for balloon platforms. The system was used to characterize the instrumental performance of the BLAST-TNG receiver and detector arrays in the lead-up to the 2019/2020 flight attempt from McMurdo Station, Antarctica. The results of this characterization are interpreted by applying a parametric software model of a LEKID detector to the measured data in order to estimate important system parameters, including the optical efficiency, optical passbands and sensitivity.

The role that magnetic fields (B-fields) play in shaping structures on various scales in the interstellar medium is one of the central areas of research which is carried out by sub-mm/FIR observatories. The Davis-Chandrasekhar-Fermi Method (DCFM) is applied to a BLASTPol 2012 map (smoothed to 5') of the inner ~1.25 deg2 of the Carina Nebula Complex (CNC, NGC 3372) in order to estimate the strength of the B-field in the plane-of-the-sky (B-pos). The resulting map contains estimates of B-pos along several thousand sightlines through the CNC. This data analysis pipeline will be used to process maps of the CNC and other science targets which will be produced during the upcoming BLAST-TNG flight. A target selection survey of five nearby external galaxies which will be mapped during the flight is also presented.
ContributorsGordon, Samuel, Ph.D (Author) / Mauskopf, Philip (Thesis advisor) / Groppi, Christopher (Committee member) / Scowen, Paul (Committee member) / Bowman, Judd (Committee member) / Jacobs, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
190900-Thumbnail Image.png
Description
TolTEC is a three-band millimeter-wave, imaging polarimeter installed on the 50 m diameter Large Millimeter Telescope (LMT) in Mexico. This camera simultaneously images the focal plane at three wavebands centered at 1.1 mm (270 GHz), 1.4 mm (214 GHz), and 2.0 mm (150 GHz). TolTEC combines polarization-sensitive kinetic inductance detectors

TolTEC is a three-band millimeter-wave, imaging polarimeter installed on the 50 m diameter Large Millimeter Telescope (LMT) in Mexico. This camera simultaneously images the focal plane at three wavebands centered at 1.1 mm (270 GHz), 1.4 mm (214 GHz), and 2.0 mm (150 GHz). TolTEC combines polarization-sensitive kinetic inductance detectors (KIDs) with the LMT to produce high resolution images of the sky in both total intensity and polarization. I present an overview of the TolTEC camera’s optical system and my contributions to the optomechanical design and characterization of the instrument. As part of my work with TolTEC, I designed the mounting structures for the cold optics within the cryostat accounting for thermal contraction to ensure the silicon lenses do not fracture when cooled. I also designed the large warm optics that re-image the light from the telescope, requiring me to perform static and vibration analyses to ensure the mounts correctly supported the mirrors. I discuss the various methods used to align the optics and the cryostat in the telescope. I discuss the Zemax optical model of TolTEC and compare it with measurements of the instrument to help with characterization. Finally, I present the results of stacking galaxies on data from the Atacama Cosmology Telescope (ACT) to measure the Sunyaev-Zel’dovich (SZ) effect and estimate the thermal energy in the gas around high red-shift, quiescent galaxies as an example of science that could be done with TolTEC data. Since the camera combines high angular resolution with images at three wavelengths near distinct SZ features, TolTEC will provide precise measurements to learn more about these types of galaxies.
ContributorsLunde, Emily Louise (Author) / Mauskopf, Philip (Thesis advisor) / Groppi, Christopher (Committee member) / Scannapieco, Evan (Committee member) / Noble, Allison (Committee member) / Bryan, Sean (Committee member) / Arizona State University (Publisher)
Created2023