Matching Items (15)
Filtering by

Clear all filters

153948-Thumbnail Image.png
Description
Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.
ContributorsLee, Soochan (Author) / Phelan, Patrick E (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Taylor, Robert A. (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2015
154122-Thumbnail Image.png
Description
Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible

Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible with heat sources. An intriguing alternative to solid-state thermoelectric devices is thermogalvanic cells, which include a generally liquid electrolyte that permits the transport of ions. Thermogalvanic cells have long been known in the electrochemistry community, but have not received much attention from the thermal transport community. This is surprising given that their performance is highly dependent on controlling both thermal and mass (ionic) transport. This research will focus on a research project, which is an interdisciplinary collaboration between mechanical engineering (i.e. thermal transport) and chemistry, and is a largely experimental effort aimed at improving fundamental understanding of thermogalvanic systems. The first part will discuss how a simple utilization of natural convection within the cell doubles the maximum power output of the cell. In the second part of the research, some of the results from the previous part will be applied in a feasibility study of incorporating thermogalvanic waste heat recovery systems into automobiles. Finally, a new approach to enhance Seebeck coefficient by tuning the configurational entropy of a mixed-ligand complex formation of copper sulfate aqueous electrolytes will be presented. Ultimately, a summary of these results as well as possible future work that can be formed from these efforts is discussed.
ContributorsGunawan, Andrey (Author) / Phelan, Patrick E (Thesis advisor) / Buttry, Daniel A (Committee member) / Mujica, Vladimiro (Committee member) / Chan, Candace K. (Committee member) / Wang, Robert Y (Committee member) / Arizona State University (Publisher)
Created2015
Description
Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-driven vapor-compressor equipment. This paper proposes an alternative data center cooling architecture that is heat-driven. The source is heat produced by the computer equipment. This

Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-driven vapor-compressor equipment. This paper proposes an alternative data center cooling architecture that is heat-driven. The source is heat produced by the computer equipment. This dissertation details experiments investigating the quantity and quality of heat that can be captured from a liquid-cooled microprocessor on a computer server blade from a data center. The experiments involve four liquid-cooling setups and associated heat-extraction, including a radical approach using mineral oil. The trials examine the feasibility of using the thermal energy from a CPU to drive a cooling process. Uniquely, the investigation establishes an interesting and useful relationship simultaneously among CPU temperatures, power, and utilization levels. In response to the system data, this project explores the heat, temperature and power effects of adding insulation, varying water flow, CPU loading, and varying the cold plate-to-CPU clamping pressure. The idea is to provide an optimal and steady range of temperatures necessary for a chiller to operate. Results indicate an increasing relationship among CPU temperature, power and utilization. Since the dissipated heat can be captured and removed from the system for reuse elsewhere, the need for electricity-consuming computer fans is eliminated. Thermocouple readings of CPU temperatures as high as 93°C and a calculated CPU thermal energy up to 67Wth show a sufficiently high temperature and thermal energy to serve as the input temperature and heat medium input to an absorption chiller. This dissertation performs a detailed analysis of the exergy of a processor and determines the maximum amount of energy utilizable for work. Exergy as a source of realizable work is separated into its two contributing constituents: thermal exergy and informational exergy. The informational exergy is that usable form of work contained within the most fundamental unit of information output by a switching device within a CPU. Exergetic thermal, informational and efficiency values are calculated and plotted for our particular CPU, showing how the datasheet standards compare with experimental values. The dissertation concludes with a discussion of the work's significance.
ContributorsHaywood, Anna (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Gupta, Sandeep (Committee member) / Trimble, Steve (Committee member) / Myhajlenko, Stefan (Committee member) / Arizona State University (Publisher)
Created2014
158810-Thumbnail Image.png
Description
Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be

Water desalination has become one of the viable solutions to provide drinking water in regions with limited natural resources. This is particularly true in small communities in arid regions, which suffer from low rainfall, declining surface water and increasing salinity of groundwater. Yet, current desalination methods are difficult to be implemented in these areas due to their centralized large-scale design. In addition, these methods require intensive maintenance, and sometimes do not operate in high salinity feedwater. Membrane distillation (MD) is one technology that can potentially overcome these challenges and has received increasing attention in the last 15 years. The driving force of MD is the difference in vapor pressure across a microporous hydrophobic membrane. Compared to conventional membrane-based technologies, MD can treat high concentration feedwater, does not need intensive pretreatment, and has better fouling resistance. More importantly, MD operates at low feed temperatures and so it can utilize low–grade heat sources such as solar energy for its operation. While the integration of solar energy and MD was conventionally indirect (i.e. by having two separate systems: a solar collector and an MD module), recent efforts were focused on direct integration where the membrane itself is integrated within a solar collector aiming to have a more compact, standalone design suitable for small-scale applications. In this dissertation, a comprehensive review of these efforts is discussed in Chapter 2. Two novel direct solar-powered MD systems were proposed and investigated experimentally: firstly, a direct contact MD (DCMD) system was designed by placing capillary membranes within an evacuated tube solar collector (ETC) (Chapter 3), and secondly, a submerged vacuum MD (S-VMD) system that uses circulation and aeration as agitation techniques was investigated (Chapter 4). A maximum water production per absorbing area of 0.96 kg·m–2·h–1 and a thermal efficiency of 0.51 were achieved. A final study was conducted to investigate the effect of ultrasound in an S-VMD unit (Chapter 5), which significantly enhanced the permeate flux (up to 24%) and reduced the specific energy consumption (up to 14%). The results add substantially to the understanding of integrating ultrasound with different MD processes.
ContributorsBamasag, Ahmad (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Wang, Liping (Committee member) / Bocanegra, Luis (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
158641-Thumbnail Image.png
Description
Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through

Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through phase transition processes over a relatively narrow temperature range. PCMs have a wide range of operating temperatures and therefore can be used in various applications such as stand-alone heat storage in a renewable energy system, thermal storage in buildings, water heating systems, etc. In this dissertation, various PCMs are incorporated and investigated numerically and experimentally with different applications namely a thermochemical metal hydride (MH) storage system and thermal storage in buildings. In the second chapter, a new design consisting of an MH reactor encircled by a cylindrical sandwich bed packed with PCM is proposed. The role of the PCM is to store the heat released by the MH reactor during the hydrogenation process and reuse it later in the subsequent dehydrogenation process. In such a system, the exothermic and endothermic processes of the MH reactor can be utilized effectively by enhancing the thermal exchange between the MH reactor and the PCM bed. Similarly, in the third chapter, a novel design that integrates the MH reactor with cascaded PCM beds is proposed. In this design, two different types of PCMs with different melting temperatures and enthalpies are arranged in series to improve the heat transfer rate and consequently shorten the time duration of the hydrogenation and dehydrogenation processes. The performance of the new designs (in chapters 2 and 3) is investigated numerically and compared with the conventional designs in the literature. The results indicate that the new designs can significantly enhance the time duration of MH reaction (up to 87%). In the fourth chapter, organic coconut oil PCM (co-oil PCM) is explored experimentally and numerically for the first time as a thermal management tool in building applications. The results show that co-oil PCM can be a promising solution to improve the indoor thermal environment in semi-arid regions.
ContributorsAlqahtani, Talal (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Mellouli, Sofiene (Committee member) / Wang, Robert (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2020