Matching Items (2)
Filtering by

Clear all filters

Description
The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.
ContributorsShuster, Eden S. (Author) / Thanga, Jekan (Thesis director) / Asphaug, Erik (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the same combination of capabilities. This project aims to validate the

A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the same combination of capabilities. This project aims to validate the symbiotic relationship of an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) with a physical implementation of a heterogenous team of robots and a demonstration of their capabilities. This paper details the selection of robots, the design of the physical coupling mechanism, and the design of the autonomous controls. An experiment was performed to assess the capabilities of the robots according to four performance criteria. The UGV must navigate a space while the UAV follows. The UAV must couple with the UGV. The UAV must lift the UGV over an obstacle. The UGV must navigate the space while carrying the UAV.
ContributorsBreaux, Chris (Author) / Artemiadis, Panagiotis (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12