Matching Items (52)
Filtering by

Clear all filters

150385-Thumbnail Image.png
Description
In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared

In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared hypocycloid mechanism allows for linear motion of the connecting rod and provides a method for perfect balance with any number of cylinders including single cylinder applications. A variety of hypocycloid engine designs and research efforts have been undertaken and produced successful running prototypes. Wiseman Technologies, Inc provided one of these prototypes to this research effort. This two-cycle 30cc half crank hypocycloid engine has shown promise in several performance categories including balance and efficiency. To further investigate its potential a more thorough and scientific analysis was necessary and completed in this research effort. The major objective of the research effort was to critically evaluate and optimize the Wiseman prototype for maximum performance in balance, efficiency, and power output. A nearly identical slider crank engine was used extensively to establish baseline performance data and make comparisons. Specialized equipment and methods were designed and built to collect experimental data on both engines. Simulation and mathematical models validated by experimental data collection were used to better quantify performance improvements. Modifications to the Wiseman prototype engine improved balance by 20 to 50% (depending on direction) and increased peak power output by 24%.
ContributorsConner, Thomas (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2011
150105-Thumbnail Image.png
Description
The objective of this work is to develop a Stop-Rotor Multimode UAV. This UAV is capable of vertical take-off and landing like a helicopter and can convert from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV can hover as a helicopter and achieve high mission range

The objective of this work is to develop a Stop-Rotor Multimode UAV. This UAV is capable of vertical take-off and landing like a helicopter and can convert from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV can hover as a helicopter and achieve high mission range of an airplane. The stop-rotor concept implies that in mid-flight the lift generating helicopter rotor stops and rotates the blades into airplane wings. The thrust in airplane mode is then provided by a pusher propeller. The aircraft configuration presents unique challenges in flight dynamics, modeling and control. In this thesis a mathematical model along with the design and simulations of a hover control will be presented. In addition, the discussion of the performance in fixed-wing flight, and the autopilot architecture of the UAV will be presented. Also presented, are some experimental "conversion" results where the Stop-Rotor aircraft was dropped from a hot air balloon and performed a successful conversion from helicopter to airplane mode.
ContributorsVargas-Clara, Alvaro (Author) / Redkar, Sangram (Thesis advisor) / Macia, Narciso (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
152181-Thumbnail Image.png
Description
The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the

The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the spectral characteristics such as natural frequencies and amplitudes. Statistical pattern recognition tools such as Hilbert Huang, Fisher's Discriminant, and Neural Network were used to identify and classify the unknown samples whether they are defective or not. In this work, a Finite Element Analysis software packages (ANSYS 13.0 and NASTRAN NX8.0) was used to obtain estimates of resonance frequencies in `good' and `bad' samples. Furthermore, a system identification approach was used to generate Auto-Regressive-Moving Average with exogenous component, Box-Jenkins, and Output Error models from experimental data that can be used for classification
ContributorsJameel, Osama (Author) / Redkar, Sangram (Thesis advisor) / Arizona State University (Publisher)
Created2013
151079-Thumbnail Image.png
Description
In this work, we focused on the stability and reducibility of quasi-periodic systems. We examined the quasi-periodic linear Mathieu equation of the form x ̈+(ä+ϵ[cost+cosùt])x=0 The stability of solutions of Mathieu's equation as a function of parameter values (ä,ϵ) had been analyzed in this work. We used the Floquet type

In this work, we focused on the stability and reducibility of quasi-periodic systems. We examined the quasi-periodic linear Mathieu equation of the form x ̈+(ä+ϵ[cost+cosùt])x=0 The stability of solutions of Mathieu's equation as a function of parameter values (ä,ϵ) had been analyzed in this work. We used the Floquet type theory to generate stability diagrams which were used to determine the bounded regions of stability in the ä-ù plane for fixed ϵ. In the case of reducibility, we first applied the Lyapunov- Floquet (LF) transformation and modal transformation, which converted the linear part of the system into the Jordan form. Very importantly, quasi-periodic near-identity transformation was applied to reduce the system equations to a constant coefficient system by solving homological equations via harmonic balance. In this process we obtained the reducibility/resonance conditions that needed to be satisfied to convert a quasi-periodic system to a constant one.
ContributorsEzekiel, Evi (Author) / Redkar, Sangram (Thesis advisor) / Meitz, Robert (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2012
132509-Thumbnail Image.png
Description
This research evaluated soft robotic knee brace designs that were intended to reduce the risk of injury, chronic pain, and osteoarthritis in laborers tasked with repetitive lifting. A soft robotic quasi-passive system was proposed due to energy efficiency, comfortability, and weight. The researcher developed three quasi-passive knee brace systems that

This research evaluated soft robotic knee brace designs that were intended to reduce the risk of injury, chronic pain, and osteoarthritis in laborers tasked with repetitive lifting. A soft robotic quasi-passive system was proposed due to energy efficiency, comfortability, and weight. The researcher developed three quasi-passive knee brace systems that would store energy when the user attempted a squat lift and release the energy when the user stood up. The first design focused on using clamped layered leaf springs to create an increased resistive force when the user bends at the knee. The researchers found that because of the unideal clamping of the springs the design failed to produce a significant increase to the forces the user experienced. The second design used a change in length of the layered leaf springs to provide a significant change in force. Through simple tests, the researchers found that the design did create a change in force significant enough to warrant further testing of the design in the future. The third and final design was inspired by a previous honors thesis by Ryan Bellman, this design used pre-stretched elastic bands to create an increased bending moment. Through experimental testing, the researchers found that the elastic bands created a factor increase of 8 from a non-loaded test. Further work would include prototyping a knee brace design and developing a method to allow the user to stretch and unstretch the elastic bands at will. In conclusion, design 2 and design 3 have the potential to significantly increase the well being of workers and increase their knee longevity.
ContributorsLewis, Kyle Jason (Co-author) / Lewis, Kyle (Co-author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132073-Thumbnail Image.png
Description
This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the

This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the different directions of motion. The range of damping applied was selected based on the known inherent damping of the human ankle, ensuring that the coupled system became positively damped, and therefore stable. Human experiments were performed to understand and quantify the effects of the variable damping controller on the human user. Within the study, the human subjects performed a target reaching exercise while the ankle robot provided the system with constant positive, constant negative, or variable damping. These three damping conditions could then be compared to analyze the performance of the system. The following performance measures were selected: maximum speed to quantify agility, maximum overshoot to quantify stability, and muscle activation to quantify effort required by the human user. Maximum speed was found to be statistically the same in the variable damping controller and the negative damping condition and to be increased from positive damping controller to variable damping condition by 57.9%, demonstrating the agility of the system. Maximum overshoot was found to significantly decrease overshoot from the negative damping condition to the variable damping controller by 39.6%, demonstrating an improvement in system stability with the variable damping controller. Muscle activation results showed that the variable damping controller required less effort than the positive damping condition, evidenced by the decreased muscle activation of 23.8%. Overall, the study demonstrated that a variable damping controller can balance the trade-off between agility and stability in human-robot interactions and therefore has many practical implications.
ContributorsArnold, James Michael (Author) / Lee, Hyunglae (Thesis director) / Yong, Sze Zheng (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
171564-Thumbnail Image.png
Description
There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several

There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several applications for wearable sensor networks presented in this paper. The study will also present a motion capture system using inertial measurement units (IMUs) and a pressure-sensing insole with a control system for gait assistance using wearable sensors. This presentation will provide details on the implementation and calibration of the pressure-sensitive insole, the IMU-based motion capture system, as well as the hip exoskeleton robot. Furthermore, the estimation of the Ground Reaction Force (GRF) from the insole design and implementation of the motion tracking using quaternion will be discussed in this document.
ContributorsLi, Xunguang (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2022
190794-Thumbnail Image.png
Description
As the explorations beyond the Earth's boundaries continue to evolve, researchers and engineers strive to develop versatile technologies capable of adapting to unknown space conditions. For instance, the utilization of Screw-Propelled Vehicles (SPVs) and robotics that utilize helical screws propulsion to transverse planetary bodies is a growing area of interest.

As the explorations beyond the Earth's boundaries continue to evolve, researchers and engineers strive to develop versatile technologies capable of adapting to unknown space conditions. For instance, the utilization of Screw-Propelled Vehicles (SPVs) and robotics that utilize helical screws propulsion to transverse planetary bodies is a growing area of interest. An example of such technology is the Extant Exobiology Life Surveyor (EELS), a snake-like robot currently developed by the NASA Jet Propulsion Laboratory (JPL) to explore the surface of Saturn’s moon, Enceladus. However, the utilization of such a mechanism requires a deep and thorough understanding of screw mobility in uncertain conditions. The main approach to exploring screw dynamics and optimal design involves the utilization of Discrete Element Method (DEM) simulations to assess interactions and behavior of screws when interacting with granular terrains. In this investigation, the Simplified Johnson-Kendall-Roberts (SJKR) model is implemented into the utilized simulation environment to account for cohesion effects similar to what is experienced on celestial bodies like Enceladus. The model is verified and validated through experimental and theoretical testing. Subsequently, the performance characteristics of screws are explored under varying parameters, such as thread depth, number of screw starts, and the material’s cohesion level. The study has examined significant relationships between the parameters under investigation and their influence on the screw performance.
ContributorsAbdelrahim, Mohammad (Author) / Marvi, Hamid (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2023