Matching Items (53)
Filtering by

Clear all filters

152982-Thumbnail Image.png
Description
Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.
ContributorsZhang, Jinjun (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2014
153690-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation.

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity, which is the focus of this research. Shock loading experiments were conducted via flyer-plate impact tests for pressures of 2-6 GPa and strain rates of 105/s on copper polycrystals of varying thermomechanical processing conditions. Serial cross sectioning of recovered target disks was performed along with electron microscopy, electron backscattering diffraction (EBSD), focused ion beam (FIB) milling, and 3-D X-ray tomogrpahy (XRT) to gain 2-D and 3-D information on the spall plane and surrounding microstructure. Statistics on grain boundaries (GB) containing damage were obtained from 2-D data and GBs of misorientations 25° and 50° were found to have the highest probability to contain damage in as-received (AR), heat treated (HT), and fully recrystallized (FR) microstructures, while {111} Σ3 GBs were globally strong. The AR microstructure’s probability peak was the most pronounced indicating GB strength is the dominant factor for damage nucleation. 3-D XRT data was used to digitally render the spall planes of the AR, HT, and FR microstructures. From shape fitting the voids to ellipsoids, it was found that the AR microstructure contained greater than 55% intergranular damage, whereas the HT and FR microstructures contained predominantly transgranular and coalesced damage modes, respectively. 3-D reconstructions of large volume damage sites in shocked Cu multicrystals showed preference for damage nucleation at GBs between adjacent grains of a high Taylor factor mismatches as well as an angle between the shock direction and the GB physical normal of ~30°-45°. 3-D FIB sectioning of individual voids led to the discovery of uniform plastic zones ~25-50% the size of the void diameter and plastic deformation directions were characterized via local average misorientation maps. Incipient transgranular voids revealed from the sectioning process were present in grains of high Taylor factors along the shock direction, which is expected as materials with a low Taylor factor along the shock direction are susceptible to growth due their accomodation of plastic deformation. Fabrication of square waves using photolithography and chemical etching was developed to study the nature of plasticity at GBs away from the spall plane. Grains oriented close to <0 1 1> had half the residual amplitudes than grains oriented close to <0 0 1>.
ContributorsBrown, Andrew (Author) / Peralta, Pedro (Committee member) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Solanki, Kiran (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015
153226-Thumbnail Image.png
Description
Fission products in nuclear fuel pellets can affect fuel performance as they change the fuel chemistry and structure. The behavior of the fission products and their release mechanisms are important to the operation of a power reactor. Research has shown that fission product release can occur through grain boundary (GB)

Fission products in nuclear fuel pellets can affect fuel performance as they change the fuel chemistry and structure. The behavior of the fission products and their release mechanisms are important to the operation of a power reactor. Research has shown that fission product release can occur through grain boundary (GB) at low burnups. Early fission gas release models, which assumed spherical grains with no effect of GB diffusion, did not capture the early stage of the release behavior well. In order to understand the phenomenon at low burnup and how it leads to the later release mechanism, a microstructurally explicit model is needed. This dissertation conducted finite element simulations of the transport behavior using 3-D microstructurally explicit models. It looks into the effects of GB character, with emphases on conditions that can lead to enhanced effective diffusion. Moreover, the relationship between temperature and fission product transport is coupled to reflect the high temperature environment.

The modeling work began with 3-D microstructure reconstruction for three uranium oxide samples with different oxygen stoichiometry: UO2.00 UO2.06 and UO2.14. The 3-D models were created based on the real microstructure of depleted UO2 samples characterized by Electron Backscattering Diffraction (EBSD) combined with serial sectioning. Mathematical equations on fission gas diffusion and heat conduction were studied and derived to simulate the fission gas transport under GB effect. Verification models showed that 2-D elements can be used to model GBs to reduce the number of elements. The effect of each variable, including fuel stoichiometry, temperature, GB diffusion, triple junction diffusion and GB thermal resistance, is verified, and they are coupled in multi-physics simulations to study the transport of fission gas at different radial location of a fuel pellet. It was demonstrated that the microstructural model can be used to incorporate the effect of different physics to study fission gas transport. The results suggested that the GB effect is the most significant at the edge of fuel pellet where the temperature is the lowest. In the high temperature region, the increase in bulk diffusivity due to excess oxygen diminished the effect of GB diffusion.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2014
155251-Thumbnail Image.png
Description
This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis reductions techniques of the CB basis. An approach based on the “Global - Local” Method generates the “global” modes by “averaging” the mass property over α and β comp., respectively (to extract a “coarse” model of α and β) and the “local” modes orthogonal to the “global” modes to add back necessary “information” for β. The last approach adopts as basis for the entire structure its linear modes which are dominant in the β component response. Then, the contributions of other modes in this part of the structure are approximated in terms of those of the dominant modes with close natural frequencies and similar mode shapes in the β component. In this manner, the non-dominant modal contributions are “lumped” onto the dominant ones, to reduce the number of modes for a prescribed accuracy. The four approaches are critically assessed on the structural finite element model of a 9-bay panel with the modal lumping-based method leading to the smallest sized ROMs. Therefore, it is extended to the nonlinear geometric situation and first recast as a rotation of the modal basis to achieve unobservable modes. In the linear case, these modes completely disappear from the formulation owing to orthogonality. In the nonlinear case, however, the generalized coordinates of these modes are still present in the nonlinear terms of the observable modes. A closure-type algorithm is then proposed to eliminate the unobserved generalized coordinates. This approach, its accuracy and computational savings, was demonstrated on a simple beam model and the 9-bay panel model.
ContributorsWang, Yuting (Author) / Mignolet, Marc P (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Oswald, Jay (Committee member) / Rajan, Subramaniam D. (Committee member) / Spottswood, Stephen M (Committee member) / Arizona State University (Publisher)
Created2017
155431-Thumbnail Image.png
Description
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear

The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
ContributorsTahir, Fraaz (Author) / Liu, Yongming (Thesis advisor) / Jiang, Hanqing (Committee member) / Rajagopalan, Jagannathan (Committee member) / Oswald, Jay (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2017
155464-Thumbnail Image.png
Description
A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell deformation leads to covalent bond elongation and subsequent bond breakage, which is captured using the bond order based force field. The outcome of the virtual loading test is used for local work analysis, which enables a quantitative study of mechanophore activation. Through the local work analysis, the onset and evolution of mechanophore activation indicating damage initiation and propagation are estimated; ultimately, the mechanophore sensitivity to external stress is evaluated. The virtual loading tests also provide accurate estimations of mechanical properties such as elastic, shear, bulk modulus, yield strain/strength, and Poisson’s ratio of the system. Experimental studies are performed in conjunction with the simulation work to validate the hybrid MD simulation framework. Less than 2% error in estimations of glass transition temperature (Tg) is observed with experimentally measured Tgs by use of differential scanning calorimetry. Virtual loading tests successfully reproduce the stress-strain curve capturing the effect of mechanophore inclusion on mechanical properties of epoxy polymer; comparable changes in Young’s modulus and yield strength are observed in experiments and simulations. Early damage signal detection, which is identified in experiments by observing increased intensity before the yield strain, is captured in simulations by showing that the critical strain representing the onset of the mechanophore activation occurs before the estimated yield strain. It is anticipated that the experimentally validated hybrid MD framework presented in this dissertation will provide a low-cost alternative to additional experiments that are required for optimizing material design parameters to improve damage sensing capability and mechanical properties.

In addition to the study of mechanochemical reaction analysis, an atomistic model of interphase in carbon fiber reinforced composites is developed. Physical entanglement between semi-crystalline carbon fiber surface and polymer matrix is captured by introducing voids in multiple graphene layers, which allow polymer matrix to intertwine with graphene layers. The hybrid MD framework is used with some modifications to estimate interphase properties that include the effect of the physical entanglement. The results are compared with existing carbon fiber surface models that assume that carbon fiber has a crystalline structure and hence are unable to capture the physical entanglement. Results indicate that the current model shows larger stress gradients across the material interphase. These large stress gradients increase the viscoplasticity and damage effects at the interphase. The results are important for improved prediction of the nonlinear response and damage evolution in composite materials.
ContributorsKoo, Bonsung (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Jiao, Yang (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2017
158307-Thumbnail Image.png
Description
The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear

The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear Reduced Order Modeling (NLROM) methodology, basis selection and/or identification methodology, to obtain reliable reduced order models of these structures. Focusing on these goals, the work carried out addressed more specifically the following issues:

i) optimization of the basis to capture at best the response in the smallest number of modes,

ii) improved identification of the reduced order model stiffness coefficients,

iii) detection of strongly nonlinear events using NLROM.

For the first issue, an approach was proposed to rotate a limited number of linear modes to become more dominant in the response of the structure. This step was achieved through a proper orthogonal decomposition of the projection on these linear modes of a series of representative nonlinear displacements. This rotation does not expand the modal space but renders that part of the basis more efficient, the identification of stiffness coefficients more reliable, and the selection of dual modes more compact. In fact, a separate approach was also proposed for an independent optimization of the duals. Regarding the second issue, two tuning approaches of the stiffness coefficients were proposed to improve the identification of a limited set of critical coefficients based on independent response data of the structure. Both approaches led to a significant improvement of the static prediction for the clamped-clamped curved beam model. Extensive validations of the NLROMs based on the above novel approaches was carried out by comparisons with full finite element response data. The third issue, the detection of nonlinear events, was finally addressed by building connections between the eigenvalues of the finite element software (Nastran here) and NLROM tangent stiffness matrices and the occurrence of the ‘events’ which is further extended to the assessment of the accuracy with which the NLROM captures the full finite element behavior after the event has occurred.
ContributorsLin, Jinshan (Author) / Mignolet, Marc (Thesis advisor) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Spottswood, Stephen (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2020
158750-Thumbnail Image.png
Description
Polyurea is a highly versatile material used in coatings and armor systems to protect against extreme conditions such as ballistic impact, cavitation erosion, and blast loading. However, the relationships between microstructurally-dependent deformation mechanisms and the mechanical properties of polyurea are not yet fully understood, especially under extreme conditions. In this

Polyurea is a highly versatile material used in coatings and armor systems to protect against extreme conditions such as ballistic impact, cavitation erosion, and blast loading. However, the relationships between microstructurally-dependent deformation mechanisms and the mechanical properties of polyurea are not yet fully understood, especially under extreme conditions. In this work, multi-scale coarse-grained models are developed to probe molecular dynamics across the wide range of time and length scales that these fundamental deformation mechanisms operate. In the first of these models, a high-resolution coarse-grained model of polyurea is developed, where similar to united-atom models, hydrogen atoms are modeled implicitly. This model was trained using a modified iterative Boltzmann inversion method that dramatically reduces the number of iterations required. Coarse-grained simulations using this model demonstrate that multiblock systems evolve to form a more interconnected hard phase, compared to the more interrupted hard phase composed of distinct ribbon-shaped domains found in diblock systems. Next, a reactive coarse-grained model is developed to simulate the influence of the difference in time scales for step-growth polymerization and phase segregation in polyurea. Analysis of the simulated cured polyurea systems reveals that more rapid reaction rates produce a smaller diameter ligaments in the gyroidal hard phase as well as increased covalent bonding connecting the hard domain ligaments as evidenced by a larger fraction of bridging segments and larger mean radius of gyration of the copolymer chains. The effect that these processing-induced structural variations have on the mechanical properties of the polymer was tested by simulating uniaxial compression, which revealed that the higher degree of hard domain connectivity leads to a 20% increase in the flow stress. A hierarchical multiresolution framework is proposed to fully link coarse-grained molecular simulations across a broader range of time scales, in which a family of coarse-grained models are developed. The models are connected using an incremental reverse–mapping scheme allowing for long time scale dynamics simulated at a highly coarsened resolution to be passed all the way to an atomistic representation.
ContributorsLiu, Minghao (Author) / Oswald, Jay (Thesis advisor) / Muhich, Christopher (Committee member) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2020
161244-Thumbnail Image.png
Description
Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are

Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are required for the thermal interface material. Traditional solder materials for packaging cannot be used for these applications as they do not meet these requirements. Sintered nano-silver is a good candidate on account of its high thermal and electrical conductivity and very high melting point. The high temperature operating conditions of these devices lead to very high thermomechanical stresses that can adversely affect performance and also lead to failure. A number of these devices are mission critical and, therefore, there is a need for very high reliability. Thus, computational and nondestructive techniques and design methodology are needed to determine, characterize, and design the packages. Actual thermal cycling tests can be very expensive and time consuming. It is difficult to build test vehicles in the lab that are very close to the production level quality and therefore making comparisons or making predictions becomes a very difficult exercise. Virtual testing using a Finite Element Analysis (FEA) technique can serve as a good alternative. In this project, finite element analysis is carried out to help achieve this objective. A baseline linear FEA is performed to determine the nature and magnitude of stresses and strains that occur during the sintering step. A nonlinear coupled thermal and mechanical analysis is conducted for the sintering step to study the behavior more accurately and in greater detail. Damage and fatigue analysis are carried out for multiple thermal cycling conditions. The results are compared with the actual results from a prior study. A process flow chart outlining the FEA modeling process is developed as a template for the future work. A Coffin-Manson type relationship is developed to help determine the accelerated aging conditions and predict life for different service conditions.
ContributorsAmla, Tarun (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Zhuang, Houlong (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2020
155202-Thumbnail Image.png
Description
A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM)

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the dislocation glide planes without any explicit treatment of the interface geometry which provides a convenient and an appealing means for describing the dislocation. A method for estimating the Peach-Koehler force by the domain form of J-integral is considered. The convergence and accuracy of the method are studied for an edge dislocation interacting with a free surface where analytical solutions are available. The force converges to the exact solution at an optimal rate for linear finite elements. The applicability of the method to dislocation interactions with inclusions is illustrated with a system of Aluminium matrix containing Aluminium-copper precipitates. The effect of size, shape and orientation of the inclusions on an edge dislocation for a difference in stiffness and coefficient of thermal expansion of the inclusions and matrix is considered. The force on the dislocation due to a hard inclusion increased by 8% in approaching the sharp corners of a square inclusion than a circular inclusion of equal area. The dislocation experienced 24% more force in moving towards the edges of a square shaped inclusion than towards its centre. When the areas of the inclusions were halved, 30% less force was exerted on the dislocation. This method was used to analyse interfaces with mismatch strains. Introducing eigenstrains equal to 0.004 to the elastic mismatch increased the force by 15 times for a circular inclusion. The energy needed to move an edge dislocation through a domain filled with circular inclusions is 4% more than that needed for a domain with square shaped inclusions.
ContributorsVeeresh, Pawan (Author) / Oswald, Jay (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016