Matching Items (473)
Filtering by

Clear all filters

149432-Thumbnail Image.png
Description
Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas into the rotor-stator cavities of turbine stages affects the durability of rotor disks. This transport is usually countered by installing seals on the rotor and

Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas into the rotor-stator cavities of turbine stages affects the durability of rotor disks. This transport is usually countered by installing seals on the rotor and stator disk rims and by pressurizing the cavities by injecting air (purge gas) bled from the compressor discharge. The configuration of the rim seals influences the magnitude of main gas ingestion as well as the interaction of the purge gas with the main gas. The latter has aerodynamic and hub endwall heat transfer implications in the main gas path. In the present work, experiments were performed on model single-stage and 1.5-stage axial-flow turbines. The turbines featured vanes, blades, and rim seals on both the rotor and stator disks. Three different rim seal geometries, viz., axially overlapping radial clearance rim seals for the single-stage turbine cavity and the 1.5-stage turbine aft cavity, and a rim seal with angular clearance for the single-stage turbine cavity were studied. In the single-stage turbine, an inner seal radially inboard in the cavity was also provided; this effectively divided the disk cavity into a rim cavity and an inner cavity. For the aft rotor-stator cavity of the 1.5-stage turbine, a labyrinth seal was provided radially inboard, again creating a rim cavity and an inner cavity. Measurement results of time-average main gas ingestion into the cavities using tracer gas (CO2), and ensemble-averaged trajectories of the purge gas flowing out through the rim seal gap into the main gas path using particle image velocimetry are presented. For both turbines, significant ingestion occurred only in the rim cavity. The inner cavity was almost completely sealed by the inner seal, at all purge gas flow rates for the single-stage turbine and at the higher purge gas flow rates for 1.5-stage turbine. Purge gas egress trajectory was found to depend on main gas and purge gas flow rates, the rim seal configuration, and the azimuthal location of the trajectory mapping plane with respect to the vanes.
ContributorsBalasubramanian, Jagdish Harihara (Author) / Roy, Ramendra P (Thesis advisor) / Lee, Taewoo (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2010
149676-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have

Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have enabled the engineering of synthetic analogues, bimetallic colloidal particles, that swim due to asymmetric ion flux originally proposed by Mitchell. Bimetallic colloidal particles swim through aqueous solutions by converting chemical fuel to fluid motion through asymmetric electrochemical reactions. This dissertation presents novel bimetallic motor fabrication strategies, motor functionality, and a study of the motor collective behavior in chemical concentration gradients. Brownian dynamics simulations and experiments show that the motors exhibit chemokinesis, a motile response to chemical gradients that results in net migration and concentration of particles. Chemokinesis is typically observed in living organisms and distinct from chemotaxis in that there is no particle directional sensing. The synthetic motor chemokinesis observed in this work is due to variation in the motor's velocity and effective diffusivity as a function of the fuel and salt concentration. Static concentration fields are generated in microfluidic devices fabricated with porous walls. The development of nanoscale particles that swim autonomously and collectively in chemical concentration gradients can be leveraged for a wide range of applications such as directed drug delivery, self-healing materials, and environmental remediation.
ContributorsWheat, Philip Matthew (Author) / Posner, Jonathan D (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Buttry, Daniel (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29
ContributorsEvans, Bartlett R. (Conductor) / Glenn, Erica (Conductor) / Steiner, Kieran (Conductor) / Thompson, Jason D. (Conductor) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Concert Choir (Performer) / Gospel Choir (Conductor) / ASU Library. Music Library (Publisher)
Created2019-03-15
ContributorsKillian, George W. (Performer) / Killian, Joni (Performer) / Vocal Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-11-05
ContributorsButler, Robb (Conductor) / McCreary, Kimilee (Conductor) / Bakko, Nicki L. (Conductor) / Schreuder, Joel (Conductor) / Larson, Matthew (Performer) / Ortman, Mory (Performer) / Graduate Chorale I (Performer) / Graduate Chorale II (Performer) / ASU Library. Music Library (Publisher)
Created1999-12-02
ContributorsGarrett, Jennifer (Conductor) / FitzPatrick, Carole (Performer) / Aspnes, Lynne (Performer) / Campbell, Andrew (Pianist) (Performer) / Ryan, Russell (Performer) / Rockmaker, Jody (Performer) / Kocour, Mike (Performer) / McLin, Katherine (Performer) / Larson, Brook Carter (Conductor) / Women's Chorus (Performer) / Men's Chorus (Performer) / ASU Library. Music Library (Publisher)
Created2009-05-04
ContributorsLarson, Brook Carter (Conductor) / Gentry, Gregory R. (Conductor) / Garrison, Ryan D. (Conductor) / Schildkret, David (Conductor) / Men's Chorus (Performer) / Symphonic Chorale (Performer) / Women's Chorus (Performer) / Chamber Singers (Performer) / Choral Union (Performer) / ASU Library. Music Library (Publisher)
Created2007-12-03
ContributorsHerberger Singers (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-10-24