Matching Items (13)
Filtering by

Clear all filters

152071-Thumbnail Image.png
Description
The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first study investigated the effect of magnitude, direction, and axis of rotation on precision grip responses to unexpected rotational perturbations of a grasped object. A robust "catch-up response" (a rapid, pulse-like increase in grip force rate previously reported only for translational perturbations) was observed whose strength scaled with the axis of rotation. Using two haptic robots, we then investigated the effects of grip surface friction, axis, and direction of perturbation on precision grip responses for unexpected translational and rotational perturbations for three different hand-centric axes. A robust catch-up response was observed for all axes and directions for both translational and rotational perturbations. Grip surface friction had no effect on the stereotypical catch-up response. Finally, we characterized the passive properties of the precision grip-object system via robot-imposed impulse perturbations. The hand-centric axis associated with the greatest translational stiffness was different than that for rotational stiffness. This work expands our understanding of the passive and active features of precision grip, a hallmark of human dexterous manipulation. Biological insights such as these could be used to enhance the functionality of artificial hands and the quality of life for upper extremity amputees.
ContributorsDe Gregorio, Michael (Author) / Santos, Veronica J. (Thesis advisor) / Artemiadis, Panagiotis K. (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Helms Tillery, Stephen I. (Committee member) / Arizona State University (Publisher)
Created2013
155798-Thumbnail Image.png
Description
Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system

Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented.

A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism.

A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.
ContributorsHolgate, Robert (Author) / Sugar, Thomas (Thesis advisor) / Artemiades, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Mignolet, Marc (Committee member) / Davidson, Joseph (Committee member) / Arizona State University (Publisher)
Created2017
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
ContributorsNevisipour, Masood (Author) / Honeycutt, Claire (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Abbas, James (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
ContributorsNalam, Varun (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2020
161316-Thumbnail Image.png
Description
This research seeks to present the design and testing of exoskeletons capable of assisting with walking gait, squatting, and fall prevention activities. The dissertation introduces wearable robotics and exoskeletons and then progresses into specific applications and developments in the targeted field. Following the introduction, chapters present and discuss different wearable

This research seeks to present the design and testing of exoskeletons capable of assisting with walking gait, squatting, and fall prevention activities. The dissertation introduces wearable robotics and exoskeletons and then progresses into specific applications and developments in the targeted field. Following the introduction, chapters present and discuss different wearable exoskeletons built to address known issues with workers and individuals with increased risk of fall. The presentation is concluded by an overall analysis of the resulting developments and identifying future work in the field.
ContributorsOlson, Jason Stewart (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2021
161841-Thumbnail Image.png
Description
The inherent behavior of many real world applications tends to exhibit complex or chaotic patterns. A novel technique to reduce and analyze such complex systems is introduced in this work, and its applications to multiple perturbed systems are discussed comprehensively. In this work, a unified approach between the Floquet

The inherent behavior of many real world applications tends to exhibit complex or chaotic patterns. A novel technique to reduce and analyze such complex systems is introduced in this work, and its applications to multiple perturbed systems are discussed comprehensively. In this work, a unified approach between the Floquet theory for time periodic systems and the Poincare theory of Normal Forms is proposed to analyze time varying systems. The proposed unified approach is initially verified for linear time periodic systems with the aid of an intuitive state augmentation and the method of Time Independent Normal Forms (TINF). This approach also resulted in the closed form expressions for the State Transition Matrix (STM) and Lyapunov-Floquet (L-F) transformation for linear time periodic systems. The application of theory towards stability analysis is further demonstrated with the system of Suction Stabilized Floating (SSF) platform. Additionally, multiple control strategies are discussed and implemented to drive an unstable time periodic system to a desired stable point or orbit efficiently and optimally. The computed L-F transformation is further utilized to analyze nonlinear and externally excited systems with deterministic and stochastic time periodic coefficients. The central theme of this work is to verify the extension of Floquet theory towards time varying systems with periodic coefficients comprising of incommensurate frequencies or quasi-periodic systems. As per Floquet theory, a Lyapunov-Perron (L-P) transformation converts a time-varying quasi-periodic system to a time-invariant form. A class of commutative quasi-periodic systems is introduced to demonstrate the proposed theory and its applications analytically. An extension of the proposed unified approach towards analyzing the linear quasi-periodic system is observed to provide good results, computationally less complex and widely applicable for strongly excited systems. The computed L-P transformation using the unified theory is applied to analyze both commutative and non-commutative linear quasi-periodic systems with nonlinear terms and external excitation terms. For highly nonlinear quasi-periodic systems, the implementation of multiple order reduction techniques and their performance comparisons are illustrated in this work. Finally, the robustness and stability analysis of nonlinearly perturbed and stochastically excited quasi-periodic systems are performed using Lyapunov's direct method and Infante's approach.
ContributorsCherangara Subramanian, Susheelkumar (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
161712-Thumbnail Image.png
Description
This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low

This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low weight, affordable manufacturing cost and a fast prototyping process -- a wider range of actuators is available to these mechanisms, while modeling their behavior requires less computational cost.The fundamental question this dissertation strives to answer is how to decode and leverage the effect of material stiffness in these robots. These robots' stiffness is relatively limited due to their slender design, specifically at larger scales. While compliant robots may have inherent advantages such as being safer to work around, this low rigidity makes modeling more complex. This complexity is mostly contained in material deformation since the conventional actuators such as servo motors can be easily leveraged in these robots. As a result, when introduced to real-world environments, efficient modeling and control of these robots are more achievable than conventional soft robots. Various approaches have been taken to design, model, and control a variety of laminate robot platforms by investigating the effect of material deformation in prototypes while they interact with their working environments. The results obtained show that data-driven approaches such as experimental identification and machine learning techniques are more reliable in modeling and control of these mechanisms. Also, machine learning techniques for training robots in non-ideal experimental setups that encounter the uncertainties of real-world environments can be leveraged to find effective gaits with high performance. Our studies on the effect of stiffness of thin, curved sheets of materials has evolved into introducing a new class of soft elements which we call Soft, Curved, Reconfigurable, Anisotropic Mechanisms (SCRAMs). Like bio-mechanical systems, SCRAMs are capable of re-configuring the stiffness of curved surfaces to enhance their performance and adaptability. Finally, the findings of this thesis show promising opportunities for foldable robots to become an alternative for conventional soft robots since they still offer similar advantages in a fraction of computational expense.
ContributorsSharifzadeh, Mohammad (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161597-Thumbnail Image.png
Description
This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during

This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments were performed with healthy participants: 1) to measure lateral ankle support during quiet standing, 2) to determine lateral ankle support during walking over compliant surfaces, and 3) to evaluate plantarflexion assistance at push-off during treadmill walking, and 4) determine if the SR-AFO could be used for gait entrainment. Group results revealed increased ankle stiffness during quiet standing with the MAVS active, reduced ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort from the SOL and GAS during 40 - 60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with healthy participants, and a drastically increased basin of entrainment, which suggests a capability to help restore the gait of impaired users in future trials. The ff-PAM actuators were used in an X-orientation to assist the hip in flexion and extension. The Soft Robotic Hip Exosuit (SR-HExo) was evaluated using the same set of actuators and trials with healthy participants showed reduction in muscle effort during hip flexion and extension to further enhance the study of soft fabric actuators on human gait assistance.
ContributorsThalman, Carly Megan (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161936-Thumbnail Image.png
Description
Many medical procedures, like surgeries, deal with the physical manipulation of sensitive internal tissues. Over time, new medical tools and techniques have been developed to improve the safety and efficacy of these procedures. Despite the leaps and bounds of progress made up to the present day, three major obstacles (among

Many medical procedures, like surgeries, deal with the physical manipulation of sensitive internal tissues. Over time, new medical tools and techniques have been developed to improve the safety and efficacy of these procedures. Despite the leaps and bounds of progress made up to the present day, three major obstacles (among others) persist, bleeding, pain, and the risk of infection. Advances in minimally invasive treatments have transformed many formerly risky surgical procedures into very safe and highly successful routines. Minimally invasive surgeries are characterized by small incision profiles compared to the large incisions in open surgeries, minimizing the aforementioned issues. Minimally invasive procedures lead to several benefits, such as shorter recovery time, fewer complications, and less postoperative pain. In minimally invasive surgery, doctors use various techniques to operate with less damage to the body than open surgery. Today, these procedures have an established, successful history and promising future. Steerable needles are one of the tools proposed for minimally invasive operations. Needle steering is a method for guiding a long, flexible needle through curved paths to reach targets deep in the body, eliminating the need for large incisions. In this dissertation, we present a new needle steering technology: magnetic needle steering. This technology is proposed to address the limitations of conventional needle steering that hindered its clinical applications. Magnetic needle steering eliminates excessive tissue damage, restrictions of the minimum radius of curvature, and the need for a complex nonlinear model, to name a few. It also allows fabricating the needle shaft out of soft and tissue-compliant materials. This is achieved by first developing an electromagnetic coil system capable of producing desired magnetic fields and gradients; then, a magnetically actuated needle is designed, and its effectiveness is experimentally evaluated. Afterward, the scalability of this technique was tested using permanent magnets controlled with a robotic arm. Furthermore, different configurations of permanent magnets and their influence on the magnetic field are investigated, enabling the possibility of designing a desired magnetic field for a specific surgical procedure and operation on a particular organ. Finally, potential future directions towards animal studies and clinical trials are discussed.
ContributorsIlami, Mahdi (Author) / Marvi, Hamid (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Nikkhah, Mehdi (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021