Matching Items (120)
Filtering by

Clear all filters

161333-Thumbnail Image.png
Description
Physical vapor deposition (PVD) of phase-separating multicomponent alloy films generates a rich variety of unique self-organized nanoscale morphologies. However, an understanding of how the different material and process parameters influence the formation of these nanostructures is limited. My dissertation aims to bridge this gap by developing phase-field models that can

Physical vapor deposition (PVD) of phase-separating multicomponent alloy films generates a rich variety of unique self-organized nanoscale morphologies. However, an understanding of how the different material and process parameters influence the formation of these nanostructures is limited. My dissertation aims to bridge this gap by developing phase-field models that can predict an entire spectrum of nanostructures as a function of processing conditions and composition in multicomponent alloys under a set of material-specific constraints. Firstly, I developed a numerical model to simulate nanoscale phase separation in codeposited immiscible binary alloy films. An investigation on the influence of deposition rates, phase-fraction, and temperature, on the evolution of self-assembled nanostructures yielded many characteristic patterns, including well-known morphologies such as the lateral and vertical concentration modulations, as well as some previously undocumented variants. I also simulated phase-separation in ternary alloyed PVD films, and studied the influence of deposition rate and composition on the evolution of self-assembled nanostructures, and recorded many novel nanoscale morphologies. I then sought to understand the role of material properties such as elastic misfit due to lattice mismatch between phases, grain boundaries formed in polycrystalline films, and the interplay of interphase and surface boundaries at the film surface. To this end, I developed phase-field models of binary PVD film deposition that incorporated these constraints and studied their role in altering the temporal and spatial characteristics of the evolving morphologies. I also investigated the formation of surface hillocks and the role of surface and interfacial energies in their evolution. By studying the change in total free energy across the different deposition models, I established that, in addition to influencing the temporal and spatial characteristics of nanoscale structures in the films, this quantity is also responsible for driving morphological transitions as the rate of deposition is increased. Insights gained from this computational study will demonstrate the viability of these models in predicting experimentally observed morphologies and form a basis for understanding the various factors involved in driving phase-separation and morphological transitions. In addition, morphology maps will serve as templates for developing new pathways for morphology control in the manufacturing of PVD alloy films.
ContributorsRaghavan, Rahul (Author) / Ankit, Kumar (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Mushongera, Leslie T (Committee member) / Arizona State University (Publisher)
Created2021
158887-Thumbnail Image.png
Description
Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing

Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing effort, and similarity of the performance of different 3D printed nozzles are among the advantages of using 3D printing techniques to develop GDVN’s. Submicron printing resolution also makes it possible to easily improve GDVN performance by optimizing the design of nozzles. In this study, 3D printed nozzles were developed to achieve low liquid and gas flow rates and high liquid jet velocities. A double-pulsed nanosecond laser imaging system was used to perform Particle Tracking Velocimetry (PTV) in order to determine jet velocities and assess jet stability/reproducibility. The testing results of pure water jets focused with He sheath gas showed that some designs can easily achieve stable liquid jets with velocities of more than 80 m/s, with pure water flowing at 3 microliters/min, and helium sheath gas flowing at less than 5 mg/min respectively. A numerical simulation pipeline was also used to characterize the performance of different 3D printed GDVNs. The results highlight the potential of making reproducible GDVNs with minimum fabrication effort, that can meet the requirements of present and future SFX and time-resolved solution scattering research.
ContributorsNazari, Reza (Author) / Adrian, Ronald (Thesis advisor) / Kirian, Richard (Thesis advisor) / Herrmann, Marcus (Committee member) / Phelan, Patrick (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2020
161518-Thumbnail Image.png
Description
The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its

The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its historic and modernized performance characteristics through a series of code improvements and optimizations. With VORLAX, rapid synthesis and verification of aircraft performance data related to wing pressure distributions, stability and control, and Federal Regulation compliance can be quickly and accurately obtained. As such, VORLAX represents a class of efficient yet largely forgotten computational techniques that allow users to explore numerous design solutions in a fraction of the time that would be needed to use more complex, full-fledged engineering tools. In the age of modern computers, one hypothesis is that VORLAX and similar “lean” computational fluid dynamics (CFD) solvers have preferential performance characteristics relative to expensive, volume grid CFD suites, such as ANSYS Fluent. By utilizing these types of programs, tasks such as pre- and post-processing become trivially simple with basic scripting languages such as Visual Basic for Applications or Python. Thus, lean engineering programs and methodologies deserve their place in modern engineering, despite their wrongfully decreasing prevalence.
ContributorsSouders, Tyler Jeffery (Author) / Takahashi, Timothy T. (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner J.A. (Committee member) / Arizona State University (Publisher)
Created2021
161883-Thumbnail Image.png
Description
Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed

Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed to a complete set of interacting processes due to a complexity of integrative analysis. In this thesis, I will develop new high-order computational approaches that reduce the amount of simplifications and model the full response of a complex system by accounting for the interaction between different physical processes as required for an accurate description of the global system behavior. Specifically, I will develop multi-physics coupling techniques based on spectral-element methods for the simulations of such systems. I focus on three specific applications: fluid-structure interaction, conjugate heat transfer, and modeling of acoustic wave propagation in non-uniform media. Fluid-structure interaction illustrates a complex system between a fluid and a solid, where a movable and deformable structure is surrounded by fluid flow, and its deformation caused by fluid affects the fluid flow interactively. To simulate this system, two coupling schemes are developed: 1) iterative implicit coupling, and 2) explicit coupling based on Robin-Neumann boundary conditions. A comprehensive verification strategy of the developed methodology is presented, including a comparison with benchmark flow solutions, h-, p- and temporal refinement studies. Simulation of a turbulent flow in a channel interacting with a compliant wall is attempted as well. Another problem I consider is when a solid is stationary, but a heat transfer occurs on the fluid-solid interface. To model this problem, a conjugate heat transfer framework is introduced. Validation of the framework, as well as studies of an interior thermal environment in a building regulated by an HVAC system with an on/off control model with precooling and multi-zone precooling strategies are presented. The final part of this thesis is devoted to modeling an interaction of acoustic waves with the fluid flow. The development of a spectral-element methodology for solution of Lighthill’s equation, and its application to a problem of leak detection in water pipes is presented.
ContributorsXu, Yiqin (Author) / Peet, Yulia (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Baer, Steven (Committee member) / Arizona State University (Publisher)
Created2021
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021
153772-Thumbnail Image.png
Description
Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance

Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance in urban areas, CFD simulation is performed on real-life urban geometry and wind velocity profiles are evaluated. Two geometries in Arizona is selected in this thesis to demonstrate the influence of building heights; one of the simulation models, ASU campus, is relatively low rise and without significant tall buildings; the other model, the downtown phoenix model, are high-rise and with greater building height difference. The content of this thesis focuses on using RANS computational fluid dynamics approach to simulate wind acceleration phenomenon in two complex geometries, ASU campus and Phoenix downtown model. Additionally, acceleration ratio and locations are predicted, the results are then used to calculate the best location for small wind turbine installments.
ContributorsYing, Xiaoyan (Author) / Huang, Huei-Ping (Thesis advisor) / Peet, Yulia (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2015
155499-Thumbnail Image.png
Description
The formation and stability of a slowly evolving zonal jet in 2-D flow with beta effect is analyzed using the model developed by Manfroi and Young in which the final governing equation was derived by means of a perturbation analysis of a barotropic vorticity equation with sinusoidal meridional mean flow.

The formation and stability of a slowly evolving zonal jet in 2-D flow with beta effect is analyzed using the model developed by Manfroi and Young in which the final governing equation was derived by means of a perturbation analysis of a barotropic vorticity equation with sinusoidal meridional mean flow. However in the original study the term β0, that represents the effect of large-scale Rossby waves, was dropped and was proceeded on a path of finding solutions for a simplified 1-D flow. The idea of this study is to understand the effects of the dropped term on the overall dynamics of the zonal jet evolution. For this purpose the system that is entirely deterministic with no additional forcing is solved by means of a standard finite difference scheme. The Numerical solutions are found for varying β0 and μ values where μ represents the bottom drag. In addition to this the criteria for the formation of zonal jets developed originally for the 1-D system is verified for the 2-D system as well. The study reveals the similarity in some of the results of the 1-D and the 2-D system like the merging of jets in the absence of bottom drag, formation of steady jets in presence of a non-zero bottom drag and the adherence to the boundary criteria for the formation of zonal jets. But when it comes to the formation of steady jets, a finite β0 value is required above which the solution is similar to the 1-D system. Also the jets formed under the presence of non-zero bottom drag seem wavy in nature which is different from the steady horizontal jets produced in the 1-D system.
ContributorsRaghunathan, Girish Nigamanth (Author) / Huang, Huei-Ping (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2017
155189-Thumbnail Image.png
Description
Over the past several years, the density of integrated circuits has been increasing at a very fast rate, following Moore’s law. The advent of three dimensional (3D) packaging technologies enable the increase in density of integrated circuits without necessarily shrinking the dimensions of the device. Under such constraints, the solder

Over the past several years, the density of integrated circuits has been increasing at a very fast rate, following Moore’s law. The advent of three dimensional (3D) packaging technologies enable the increase in density of integrated circuits without necessarily shrinking the dimensions of the device. Under such constraints, the solder volume necessary to join the various layers of the package is also extremely small. At smaller length scales, the local cooling rates are higher, so the microstructures are much finer than that obtained in larger joints (BGA, C4). The fraction of intermetallic compounds (IMCs) present in solder joints in these volumes will be larger. The Cu6Sn5 precipitate size and spacing, and Sn grain structure and crystallography will be different at very small volumes. These factors will most certainly affect the performance of the solder. Examining the mechanical behavior and reliability of Pb-free solders is difficult, primarily because a methodology to characterize the microstructure and the mechanics of deformation at these extremely small length scales has yet to be developed.

In this study, Sn grain orientation and Cu6Sn5 IMC fraction, size, and morphology are characterized in 3D, in pure Sn based solder joints. The obtained results show differences in morphology of Sn grains and IMC precipitates as a function of location within the solder joint indicating influence of local cooling rate differences. Ex situ and in situ electromigration tests done on 250 um and 500 um pure Sn solder joints elucidate the evolution of microstructure, specifically Sn grain growth, IMC segregation and surface degradation. This research implements 3D quantification of microstructural features over micro and nano-scales, thereby enabling a multi-scale / multi-characterization approach.
ContributorsKirubanandham, Antony (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiao, Yang (Committee member) / Lu, Minhua (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2016
155305-Thumbnail Image.png
Description
The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a

The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a cylinder. A series of visualization studies, Fourier analysis and proper orthogonal decomposition are employed to qualitatively and quantitatively inspect the large-scale structures’ length and time scales, spatial organization, and dynamic properties. The data in this study is generated by direct numerical simulation to resolve all the scales of turbulence in a 6.3 aspect-ratio cylinder at a Rayleigh number of 9.6 × 107 and Prandtl number of 6.7. Single and double point statistics are compared against experiments and several resolution criteria are examined to verify that the simulation has enough spatial and temporal resolution to adequately represent the physical system.

Large-scale structures are found to organize as roll-cells aligned along the cell’s side walls, with rays of vorticity pointing toward the core of the cell. Two different large- scale organizations are observed and these patterns are well described spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. These Fourier modes are shown to be dominant throughout the entire domain, and are found to be the primary source for radial inhomogeneity by inspection of the energy spectra. The precision with which the azimuthal Fourier modes describe these large-scale structures shows that these structures influence a large range of length scales. Conversely, the smaller scale structures are found to be more sensitive to radial position within the Fourier modes showing a strong dependence on physical length scales.

Dynamics in the large-scale structures are observed including a transition in the global pattern followed by a net rotation about the central axis. The transition takes place over 10 eddy-turnover times and the subsequent rotation occurs at a rate of approximately 1.1 degrees per eddy-turnover. These time-scales are of the same order of magnitude as those seen in lower aspect-ratio RBC for similar events and suggests a similarity in dynamic events across different aspect-ratios.
ContributorsSakievich, Philip Sakievich (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Squires, Kyle (Committee member) / Herrmann, Marcus (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2017
156144-Thumbnail Image.png
Description
This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In

This dissertation will investigate two of the most promising high-capacity anode

materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on

studying the mechanical behaviors of the two materials during charge and discharge and

understanding how these mechanical behaviors may affect their electrochemical

performance.

In the first part, amorphous Si anode will be studied. Despite many existing studies

on silicon (Si) anodes for lithium ion batteries (LIBs), many essential questions still exist

on compound formation, composition, and properties. Here it is shown that some

previously accepted findings do not truthfully reflect the actual lithiation mechanisms in

realistic battery configurations. Furthermore the correlation between structure and

mechanical properties in these materials has not been properly established. Here, a rigorous

and thorough study is performed to comprehensively understand the electrochemical

reaction mechanisms of amorphous-Si (a-Si) in a realistic LIB configuration. In-depth

microstructural characterization was performed and correlations were established between

Li-Si composition, volumetric expansion, and modulus/hardness. It is found that the

lithiation process of a-Si in a real battery setup is a single-phase reaction rather than the

accepted two-phase reaction obtained from in-situ TEM experiments. The findings in this

dissertation establish a reference to quantitatively explain many key metrics for lithiated a

Si as anodes in real LIBs, and can be used to rationally design a-Si based high-performance

LIBs guided by high-fidelity modeling and simulations.

In the second part, Li metal anode will be investigated. Problems related to dendrite

growth on lithium metal anodes such as capacity loss and short circuit present major

barriers to the next-generation high-energy-density batteries. The development of

successful mitigation strategies is impeded by the incomplete understanding of the Li

dendrite growth mechanisms. Here the enabling role of plating residual stress in dendrite

initiation through novel experiments of Li electrodeposition on soft substrates is confirmed,

and the observations is explained with a stress-driven dendrite growth model. Dendrite

growth is mitigated on such soft substrates through surface-wrinkling-induced stress

relaxation in deposited Li film. It is demonstrated that this new dendrite mitigation

mechanism can be utilized synergistically with other existing approaches in the form of

three-dimensional (3D) soft scaffolds for Li plating, which achieves superior coulombic

efficiency over conventional hard copper current collectors under large current density.
ContributorsWang, Xu (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Thesis advisor) / Chan, Candace (Committee member) / Wang, Liping (Committee member) / Qiong, Nian (Committee member) / Arizona State University (Publisher)
Created2018