Matching Items (31)
Filtering by

Clear all filters

151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
161596-Thumbnail Image.png
Description
Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing

Additively Manufactured Thin-wall Inconel 718 specimens commonly find application in heat exchangers and Thermal Protection Systems (TPS) for space vehicles. The wall thicknesses in applications for these components typically range between 0.03-2.5mm. Laser Powder Bed Fusion (PBF) Fatigue standards assume thickness over 5mm and consider Hot Isostatic Pressing (HIP) as conventional heat treatment. This study aims at investigating the dependence of High Cycle Fatigue (HCF) behavior on wall thickness and Hot Isostatic Pressing (HIP) for as-built Additively Manufactured Thin Wall Inconel 718 alloys. To address this aim, high cycle fatigue tests were performed on specimens of seven different thicknesses (0.3mm,0.35mm, 0.5mm, 0.75mm, 1mm, 1.5mm, and 2mm) using a Servohydraulic FatigueTesting Machine. Only half of the specimen underwent HIP, creating data for bothHIP and No-HIP specimens. Upon analyzing the collected data, it was noticed that the specimens that underwent HIP had similar fatigue behavior to that of sheet metal specimens. In addition, it was also noticed that the presence of Porosity in No-HIP specimens makes them more sensitive to changes in stress. A clear decrease in fatigue strength with the decrease in thickness was observed for all specimens.
ContributorsSaxena, Anushree (Author) / Bhate, Dhruv (Thesis advisor) / Liu, Yongming (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2021
190956-Thumbnail Image.png
Description
This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron

This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron sputtering, the crystalline nature and B:N stoichiometric ratio of deposited thin films were investigated by X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. Thicknesses revealed by ellipsometry analysis for nearly stoichiometric B:N thin films and their corresponding deposition times were used for estimating BN interlayer deposition times during the deposition of Cu/BN multilayer thin films. To characterize the microstructure of the synthesized Cu/BN multilayer thin films, XRD and scanning electron microscopy (SEM) have been used. Finally, a comparison of nanoindentation measurements on pure Cu and Cu/BN multilayer thin films having different number of BN interlayers were used for studying the influence of BN interlayers on improving mechanical properties such as hardness and elastic modulus. The results show that the stoichiometry of BN thin films is dependent on the Ar/N₂ flow rate during magnetron sputtering. An optimal Ar/N₂ flow rate of 13:5 during deposition was required to achieve an approximately 1:1 B:N stoichiometry. Grazing incidence and powder XRD analysis on these stoichiometric BN thin films deposited at room temperature did not reveal a phase match when compared to hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) reference XRD patterns. For a BN thin film deposition time of 5 hours, a thickness of approximately 40 nm was achieved, as revealed by ellipsometry. XRD and microstructure analysis using scanning electron microscopy (SEM) on pure Cu and Cu/BN thin films showed that the Cu grain size in Cu/BN thin films is much finer than pure Cu thin films. Interestingly, nanoindentation measurements on pure Cu and Cu/BN thin films having a similar overall thickness demonstrated that hardness and Young’s modulus of the films were improved significantly when BN interlayers are present.
ContributorsCaner, Sumeyye (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2023
Description
The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters

The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters and achieves high accuracy (0.97) and robustness (F1 score of 0.98). Leveraging CT images for characterization and data extraction from the CT-images built STL files, the model effectively detects crack initiation sites while minimizing false positives and negatives. Data augmentation techniques, including SMOTE+Tomek Links, are employed to address imbalanced data distributions and improve model performance. This study proposes the Probabilistic Physics-guided Neural Network 2.0 (PPgNN) for probabilistic fatigue life estimation. The presented approach overcomes the limitations of classical regression machine models commonly used to analyze fatigue data. One key advantage of the proposed method is incorporating known physics constraints, resulting in accurate and physically consistent predictions. The efficacy of the model is demonstrated by training the model with multiple fatigue S-N curve data sets from open literature with relevant morphological data and tested using the data extracted from CT-built STL files. The results illustrate that PPgNN 2.0 is a flexible and robust model for predicting fatigue life and quantifying uncertainties by estimating the mean and standard deviation of the fatigue life. The loss function that trains the proposed model can capture the underlying distribution and reduce the prediction error. A comparison study between the performance of neural network models highlights the benefits of physics-guided learning for fatigue data analysis. The proposed model demonstrates satisfactory learning capacity and generalization, providing accurate fatigue life predictions to unseen examples. An elastic-plastic Finite Element Model (FEM) is developed in the second part to assess pipeline integrity, focusing on burst pressure estimation in high-pressure gas pipelines with interactive corrosion defects. The FEM accurately predicts burst pressure and evaluates the remaining useful life by considering the interaction between corrosion defects and neighboring pits. The FEM outperforms the well-known ASME-B31G method in handling interactive corrosion threats.
ContributorsBalamurugan, Rakesh (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2023
171718-Thumbnail Image.png
Description
Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites

Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites for cracks. As surface conditions are not always satisfactory, particularly for additively manufactured components, it is necessary to develop a reliable model for fatigue life estimation considering surface roughness effects and assure structural integrity. This research study focuses on extending a previously developed subcycle fatigue crack growth model to include the effects of surface roughness. Unlike other models that consider surface irregularities as series of cracks, the proposed model is unique in the way that it treats the peaks and valleys of surface texture as a single equivalent notch. First, an equivalent stress concentration factor for the roughness was estimated and introduced into an asymptotic interpolation method for notches. Later, a concept called equivalent initial flaw size was incorporated along with linear elastic fracture mechanics to predict the fatigue life of Ti-6Al-4V alloy with different levels of roughness under uniaxial and multiaxial loading conditions. The predicted results were validated using the available literature data. The developed model can also handle variable amplitude loading conditions, which is suggested for future work.
ContributorsKethamukkala, Kaushik (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
187358-Thumbnail Image.png
Description
This thesis presents a study of the microstructure and mechanical properties of Yttrium-Zinc (YZn) thin films. Rare-earth intermetallic compounds have gained significant attention in recent years due to their unique structural and mechanical properties, making them suitable for various applications. However, studies on the Y-Zn system are scarce and there

This thesis presents a study of the microstructure and mechanical properties of Yttrium-Zinc (YZn) thin films. Rare-earth intermetallic compounds have gained significant attention in recent years due to their unique structural and mechanical properties, making them suitable for various applications. However, studies on the Y-Zn system are scarce and there are very few published reports on YZn thin films. The main objective of this study is to investigate the microstructure and mechanical properties of YZn thin films using various experimental techniques.In this study, YZn films of various thicknesses were synthesized via magnetron co-sputtering: 200 nm, 500 nm, 1 µm, 2 µm and 11.5 µm. Then these samples were annealed at 250°C, 300°C, 350°C and 400°C to investigate their microstructural evolution and mechanical properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM) based techniques have been used to analyze the microstructure and chemical composition of these compounds. The mechanical properties such as hardness and elastic modulus have been measured using nanoindentation. The results show that the microstructure of YZn thin films is dependent on the annealing conditions. The microstructure of samples deposited at room temperature and those annealed at 250°C and 300°C were found to be amorphous except for the 200 nm YZn film. Annealing at higher temperatures leads to crystallization of the films. Moreover, the results demonstrate that YZn intermetallic thin films have high hardness, which varies with the film thickness and annealing treatment. This work represents an initial effort to understand the microstructural evolution and mechanical properties of YZn thin films as a function of film thickness and annealing temperatures. The results of this study can be used to guide the design and development of YZn thin films with tailored microstructures and mechanical properties for various applications.
ContributorsAkkarakaduppil, Riju Philip James (Author) / Rajagopalan, Jagannathan (Thesis advisor, Committee member) / Peralta, Pedro (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2023
156712-Thumbnail Image.png
Description
Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that

Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that catastrophic disasters that arise from fatigue failure could be avoided. The stress-life approach is the most classical way that academia applies to analyze fatigue data, which correlates the fatigue lifetime with stress amplitudes during cyclic loadings. Fracture mechanics approach is another well-established way, by which people regard the cyclic stress intensity factor as the driving force during fatigue crack nucleation and propagation, and numerous models (such as the well-known Paris’ law) are developed by researchers.

The significant drawback of currently widely-used fatigue analysis approaches, nevertheless, is that they are all cycle-based, limiting researchers from digging into sub-cycle regime and acquiring real-time fatigue behavior data. The missing of such data further impedes academia from validating hypotheses that are related to real-time observations of fatigue crack nucleation and growth, thus the existence of various phenomena, such as crack closure, remains controversial.

In this thesis, both classical stress-life approach and fracture-mechanics-based approach are utilized to study the fatigue behavior of alloys. Distinctive material characterization instruments are harnessed to help collect and interpret key data during fatigue crack growth. Specifically, an investigation on the sub-cycle fatigue crack growth behavior is enabled by in-situ SEM mechanical testing, and a non-uniform growth mechanism within one loading cycle is confirmed by direct observation as well as image interpretation. Predictions based on proposed experimental procedure and observations show good match with cycle-based data from references, which indicates the credibility of proposed methodology and model, as well as their capability of being applied to a wide range of materials.
ContributorsLiu, Siying (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
154639-Thumbnail Image.png
Description
A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work

A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.
ContributorsWei, Haoyang (Author) / Liu, Yongming (Thesis advisor) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2016
154679-Thumbnail Image.png
Description
Mechanical behavior of metallic thin films at room temperature (RT) is relatively well characterized. However, measuring the high temperature mechanical properties of thin films poses several challenges. These include ensuring uniformity in sample temperature and minimizing temporal fluctuations due to ambient heat loss, in addition to difficulties involved in mechanical

Mechanical behavior of metallic thin films at room temperature (RT) is relatively well characterized. However, measuring the high temperature mechanical properties of thin films poses several challenges. These include ensuring uniformity in sample temperature and minimizing temporal fluctuations due to ambient heat loss, in addition to difficulties involved in mechanical testing of microscale samples. To address these issues, we designed and analyzed a MEMS-based high temperature tensile testing stage made from single crystal silicon. The freestanding thin film specimens were co-fabricated with the stage to ensure uniaxial loading. Multi-physics simulations of Joule heating, incorporating both radiation and convection heat transfer, were carried out using COMSOL to map the temperature distribution across the stage and the specimen. The simulations were validated using temperature measurements from a thermoreflectance microscope.
ContributorsEswarappa Prameela, Suhas (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
154126-Thumbnail Image.png
Description
Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to

Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to developing this understanding as well as building multi-scale models of fuel behavior with predicting capabilities. In this work, modeling techniques were developed to study effects of microstructure on Young’s modulus, which was selected as a key representative property that affects overall mechanical behavior, using experimental data obtained from micro-cantilever bending testing as benchmarks. Beam theory was firstly introduced to calculate Young's modulus of UO2 from the experimental data and then three-dimensional finite element models of the micro-cantilever beams were constructed to simulate bending tests in UO2 at room temperature. The influence of the pore distribution was studied to explain the discrepancy between predicted values and experimental results. Results indicate that results of tests are significantly affected by porosity given that both pore size and spacing in the samples are of the order of the micro-beam dimensions. Microstructure reconstruction was conducted with images collected from three-dimensional serial sectioning using focused ion beam (FIB) and electron backscattering diffraction (EBSD) and pore clusters were placed at different locations along the length of the beam. Results indicate that the presence of pore clusters close to the substrate, i.e., the clamp of the micro-cantilever beam, has the strongest effect on load-deflection behavior, leading to a reduction of stiffness that is the largest for any location of the pore cluster. Furthermore, it was also found from both numerical and i

analytical models that pore clusters located towards the middle of the span and close to the end of the beam only have a very small effect on the load-deflection behavior, and it is concluded that better estimates of Young's modulus can be obtained from micro- cantilever experiments by using microstructurally explicit models that account for porosity in about one half of the beam length close to the clamp. This, in turn, provides an avenue to simplify micro-scale experiments and their analysis.
ContributorsGong, Bowen (Author) / Peralta, Pedro (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2015