Matching Items (97)
Filtering by

Clear all filters

152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
152071-Thumbnail Image.png
Description
The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first study investigated the effect of magnitude, direction, and axis of rotation on precision grip responses to unexpected rotational perturbations of a grasped object. A robust "catch-up response" (a rapid, pulse-like increase in grip force rate previously reported only for translational perturbations) was observed whose strength scaled with the axis of rotation. Using two haptic robots, we then investigated the effects of grip surface friction, axis, and direction of perturbation on precision grip responses for unexpected translational and rotational perturbations for three different hand-centric axes. A robust catch-up response was observed for all axes and directions for both translational and rotational perturbations. Grip surface friction had no effect on the stereotypical catch-up response. Finally, we characterized the passive properties of the precision grip-object system via robot-imposed impulse perturbations. The hand-centric axis associated with the greatest translational stiffness was different than that for rotational stiffness. This work expands our understanding of the passive and active features of precision grip, a hallmark of human dexterous manipulation. Biological insights such as these could be used to enhance the functionality of artificial hands and the quality of life for upper extremity amputees.
ContributorsDe Gregorio, Michael (Author) / Santos, Veronica J. (Thesis advisor) / Artemiadis, Panagiotis K. (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Helms Tillery, Stephen I. (Committee member) / Arizona State University (Publisher)
Created2013
157713-Thumbnail Image.png
Description
Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum.

Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum. An economic method is always desired to fabricate spectrally selective surfaces with improved energy conversion efficiency. Colloidal lithography is a recently emerged way of nanofabrication, which has advantages of low-cost and easy operation.

In this thesis, aluminum metasurface structures are proposed based on colloidal lithography method. High Frequency Structure Simulator is used to numerically study optical properties and design the aluminum metasurfaces with selective absorption. Simulation results show that proposed aluminum metasurface structure on aluminum oxide thin film and aluminum substrate has a major reflectance dip, whose wavelength is tunable within the near-infrared and visible spectrum with metasurface size. As the metasurface is opaque due to aluminum film, it indicates strong wavelength-selective optical absorption, which is due to the magnetic resonance between the top metasurface and bottom Al film within the aluminum oxide layer.

The proposed sample is fabricated based on colloidal lithography method. Monolayer polystyrene particles of 500 nm are successfully prepared and transferred onto silicon substrate. Scanning electron microscope is used to check the surface topography. Aluminum thin film with 20-nm or 50-nm thickness is then deposited on the sample. After monolayer particles are removed, optical properties of samples are measured by micro-scale optical reflectance and transmittance microscope. Measured and simulated reflectance of these samples do not have frequency selective properties and is not sensitive to defects. The next step is to fabricate the Al metasurface on Al_2 O_3 and Al films to experimentally demonstrate the selective absorption predicted from the numerical simulation.
ContributorsGuan, Chuyun (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161597-Thumbnail Image.png
Description
This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during

This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments were performed with healthy participants: 1) to measure lateral ankle support during quiet standing, 2) to determine lateral ankle support during walking over compliant surfaces, and 3) to evaluate plantarflexion assistance at push-off during treadmill walking, and 4) determine if the SR-AFO could be used for gait entrainment. Group results revealed increased ankle stiffness during quiet standing with the MAVS active, reduced ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort from the SOL and GAS during 40 - 60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with healthy participants, and a drastically increased basin of entrainment, which suggests a capability to help restore the gait of impaired users in future trials. The ff-PAM actuators were used in an X-orientation to assist the hip in flexion and extension. The Soft Robotic Hip Exosuit (SR-HExo) was evaluated using the same set of actuators and trials with healthy participants showed reduction in muscle effort during hip flexion and extension to further enhance the study of soft fabric actuators on human gait assistance.
ContributorsThalman, Carly Megan (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
168383-Thumbnail Image.png
Description
Biogas’s potential as a renewable fuel source has been an area of increased research in recent years. One issue preventing wide-spread use of biogas as a fuel is the trace amounts of impurities that damage fuel-burning equipment by depositing silicon, sulfur, calcium and other elements on their surface. This study

Biogas’s potential as a renewable fuel source has been an area of increased research in recent years. One issue preventing wide-spread use of biogas as a fuel is the trace amounts of impurities that damage fuel-burning equipment by depositing silicon, sulfur, calcium and other elements on their surface. This study aims to analyze the effects of a high concentration of L4 linear siloxane on solid oxide fuel cell performance until failure occurs. L4 siloxane has not been extensively researched previously, and this investigation aims to provide new data to support similar, though slower, degradation compared to D4, D5 and other siloxanes in solid oxide fuel cells. The experiments were conducted inside a furnace heated to 800℃ with an Ni-YSZ-supported (Nickel-yttria-stabilized zirconia) fuel cell. A fuel source with a flow rate of 20 mL/min of hydrogen gas, 10 mL/min of nitrogen gas and 0.15 mL/min of L4 siloxane was used. Air was supplied to the cathode. The effects of siloxane deposition on cell voltage and power density degradation and resistance increase were studied by using techniques like the current-voltage method, electrochemical impedance spectroscopy, and gas chromatography. The results of the experiment after reduction show roughly constant degradation of 8.35 mV/hr, followed after approximately 8 hours by an increasing degradation until cell failure of 130.45 mV/hr. The initial degradation and stagnation match previous research in siloxane deposition on SOFCs, but the sharp decline to failure does not. A mechanism for solid oxide fuel cell failure is proposed based on the data.
ContributorsRiley, Derall M. (Author) / Milcarek, Ryan J (Thesis advisor) / Wang, Liping (Committee member) / Phelan, Patrick E (Committee member) / Arizona State University (Publisher)
Created2021
171541-Thumbnail Image.png
Description
The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to

The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to magic-sized clusters. Magic-sized clusters have an anomalously high thermal conductivity relative to the extrapolated size-dependence trend line for the colloidal nanocrystals. This anomalously high thermal conductivity could probably result from the monodispersity of magic-sized clusters. To support this conjecture, a method of deliberately eliminating the monodispersity of MSCs by mixing them with colloidal nanocrystals was performed. Experiment results showed that mixtures of nanocrystals and MSCs have a lower thermal conductivity that falls approximately on the extrapolated trendline for colloidal nanocrystal thermal conductivity as a function of size.
ContributorsSun, Ming-Hsien (Author) / Wang, Robert (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2022
171605-Thumbnail Image.png
Description
Windows are one of the most significant locations of heat transfer through a building envelope. In warm climates, it is important that heat gain through windows is minimized. Heat transfer through a window glazing occurs by all major forms of heat transfer (convection, conduction, and radiation). Convection and conduction

Windows are one of the most significant locations of heat transfer through a building envelope. In warm climates, it is important that heat gain through windows is minimized. Heat transfer through a window glazing occurs by all major forms of heat transfer (convection, conduction, and radiation). Convection and conduction effects can be limited by manipulating the thermal properties of a window’s construction. However, radiation heat transfer into a building will always occur if a window glazing is visibly transparent. In an effort to reduce heat gain through the building envelope, a window glazing can be designed with spectrally selective properties. These spectrally selective glazings would possess high reflectivity in the near-infrared (NIR) regime (to prevent solar heat gain) and high emissivity in the atmospheric window, 8-13μm (to take advantage of the radiative sky cooling effect). The objective of this thesis is to provide a comprehensive study of the thermal performance of a visibly transparent, high-emissivity glass window. This research proposes a window constructed by coating soda lime glass in a dual layer consisting of Indium Tin Oxide (ITO) and Polyvinyl Fluoride (PVF) film. The optical properties of this experimental glazing were measured and demonstrated high reflectivity in the NIR regime and high emissivity in the atmospheric window. Outdoor field tests were performed to experimentally evaluate the glazing’s thermal performance. The thermal performance was assessed by utilizing an experimental setup intended to mimic a building with a skylight. The proposed glazing experimentally demonstrated reduced indoor air temperatures compared to bare glass, ITO coated glass, and PVF coated glass. A theoretical heat transfer model was developed to validate the experimental results. The results of the theoretical and experimental models showed good agreement. On average, the theoretical model demonstrated 0.44% percent error during the daytime and 0.52% percent error during the nighttime when compared to the experimentally measured temperature values.
ContributorsTrujillo, Antonio Jose (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022