Matching Items (874)
Filtering by

Clear all filters

149831-Thumbnail Image.png
Description
The focus of this study is statistical characterization of the significant duration of strong ground motion time histories. The significant duration is defined as the time needed to build up between five and seventy five (SD575) and ninety five percent (SD595) of the energy of a strong motion record.

The focus of this study is statistical characterization of the significant duration of strong ground motion time histories. The significant duration is defined as the time needed to build up between five and seventy five (SD575) and ninety five percent (SD595) of the energy of a strong motion record. Energy is measured as the integral of the square of the acceleration time history and can be used to capture the potential destructiveness of an earthquake. Correlations of the geometric means of the two significant duration measures (SD575 and SD595) with source, path, and near surface site parameters have been investigated using the geometric mean of 2,690 pairs of recorded horizontal strong ground motion data from 129 earthquakes in active plate margins. These time histories correspond to moment magnitudes between 4.8 and 7.9, site to source distances up to 200 km, and near surface shear wave velocity ranging from 120 to 2250 m/s. Empirical relationships have been developed based upon the simple functional forms, and observed correlations. The coefficients of the independent variables in these empirical relationships have been determined through nonlinear regression analysis using a random effects model. It is found that significant duration measures correlate well with magnitude, site to source distance, and near surface shear wave velocity. The influence of the depth to top of rupture, depth to the shear wave velocity of 1000 m/s and the style of faulting were not found to be statistically significant. Comparison of the empirical relationship developed in this study with existing empirical relationships for the significant duration shows good agreement at intermediate magnitudes (M 6.5). However, at larger and smaller magnitude, the differences between the correlations developed in this study and those from previous studies are significant.
ContributorsGhanat, Simon T (Author) / Kavazanjian, Jr., Edward (Thesis advisor) / Houston, Sandra (Committee member) / Arrowsmith, Ramon (Committee member) / Arizona State University (Publisher)
Created2011
149822-Thumbnail Image.png
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
ContributorsAlsanad, Abdullah (Author) / Kavazanjian, Edward (Thesis advisor) / Edwards, David (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
149880-Thumbnail Image.png
Description
Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that

Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than for the fluid and is sensitive to the particle response time. The effects of inter-particle collisions are relatively strong and apparent throughout the flow, being most effective in the boundary layer. Gravitational settling increases the particle concentration near the wall and consequently increase inter-particle collisions.
ContributorsMorales, Fernando (Author) / Squires, Kyle D. (Thesis advisor) / Wells, Valana L. (Committee member) / Calhoun, Ronald J. (Committee member) / Arizona State University (Publisher)
Created2011
149654-Thumbnail Image.png
Description
Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications.

Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications. Predictive modeling methods can only achieve accurate results with robust input physical parameters, therefore TED characterization methods are critical for future development of the field. Often times, physical properties of TED sub-components are very well known, however the "effective" properties of a TED module can be difficult to measure with certainty. The module-level properties must be included in predictive modeling, since these include electrical and thermal contact resistances which are difficult to analytically derive. A unique characterization method is proposed, which offers the ability to directly measure all device-level physical parameters required for accurate modeling. Among many other unique features, the metrology allows the capability to perform an independent validation of empirical parameters by measuring parasitic heat losses. As support for the accuracy of the measured parameters, the metrology output from an off-the-shelf TED is used in a system-level thermal model to predict and validate observed metrology temperatures. Finally, as an extension to the benefits of this metrology, it is shown that resulting data can be used to empirically validate a device-level dimensionless relationship. The output provides a powerful performance prediction tool, since all physical behavior in a performance domain is captured using a single analytical relationship and can be plotted on a singe graph.
ContributorsLofgreen, Kelly (Author) / Phelan, Patrick E (Thesis advisor) / Posner, Jonathan (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2011
150074-Thumbnail Image.png
Description
Over the past forty years the nonprofit sector has experienced a steady rise in the professionalization of its employees and its operations. Some have argued that this trend is in large part a reaction to the requirements foisted upon the nonprofit sector through the passage of the Tax Reform Act

Over the past forty years the nonprofit sector has experienced a steady rise in the professionalization of its employees and its operations. Some have argued that this trend is in large part a reaction to the requirements foisted upon the nonprofit sector through the passage of the Tax Reform Act of 1969. While some scholars have detailed a number of unintended consequences that have resulted from this trend toward professionalization, in general scholars and practitioners have accepted it as a necessary step along the path toward ensuring that service is administered in an accountable and responsible manner. I analyze the contemporary trend in professionalization of the nonprofit sector from a different angle--one which seeks to determine how the nonprofit sector came to problematize the nature of its service beginning in the early twentieth century, as well as the consequences of doing so, rather than reinforce the existing normative arguments. To this end, I employ an "analytics of government" from an ethical and political perspective which is informed by Michel Foucault's conception of genealogy, as well as his work on governing rationalities, in order to reveal the historical and political forces that contribute to the nonprofit sector's professionalization and that shape its current processes, institutions, and norms. I ultimately argue that these forces serve to reinforce a broad movement away from the charitable impulse that motivates individuals to engage in personal acts of compassion and toward a philanthropic enterprise by which knowledge is rationally applied toward reforming society rather than aiding individuals. This movement toward institutional philanthropy and away from individual charity supplants the needs of the individual with the needs of the organization. I then apply this analysis to propose an alternate governing model for the nonprofit sector--one that draws on Foucault's exploration of ancient writings on love, self-knowledge, and governance--in order to locate a space for the individual in nonprofit life.
ContributorsSandberg, Billie (Author) / Catlaw, Thomas J (Thesis advisor) / Denhardt, Janet V (Committee member) / Hall, John S. (Committee member) / Arizona State University (Publisher)
Created2011
150169-Thumbnail Image.png
Description
A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are developed for the in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity model. Both new models allows for degradation in the cyclic shear resistance from a peak to a large displacement shear strength. The ability of the finite difference model to predict forces and strains in a geosynthetic element modeled as a beam element with zero moment of inertia sandwiched between two interface elements is demonstrated using hypothetical models of a heap leach pad and two typical landfill configurations. The numerical model is then used to conduct back analyses of the performance of two lined municipal solid waste (MSW) landfills subjected to strong ground motions in the Northridge earthquake. The modulus reduction "backbone curve" employed with the Masing criterion and 2% Rayleigh damping to model the cyclic behavior of MSW was established by back-analysis of the response of the Operating Industries Inc. landfill to five different earthquakes, three small magnitude nearby events and two larger magnitude distant events. The numerical back analysis was able to predict the tears observed in the Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to seams and scratches in the geomembrane are taken into account. The apparent good performance of the Lopez Canyon landfill geomembrane and the observed tension in the overlying geotextile after the Northridge event was also successfully predicted using the numerical model.
ContributorsArab, Mohamed G (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150256-Thumbnail Image.png
Description
While much effort in Stirling engine development is placed on making the high-temperature region of the Stirling engine warmer, this research explores methods to lower the temperature of the cold region by improving heat transfer in the cooler. This paper presents heat transfer coefficients obtained for a Stirling engine heat

While much effort in Stirling engine development is placed on making the high-temperature region of the Stirling engine warmer, this research explores methods to lower the temperature of the cold region by improving heat transfer in the cooler. This paper presents heat transfer coefficients obtained for a Stirling engine heat exchanger with oscillatory flow. The effects of oscillating frequency and input heat rate on the heat transfer coefficients are evaluated and details on the design and development of the heat exchanger test apparatus are also explained. Featured results include the relationship between overall heat transfer coefficients and oscillation frequency which increase from 21.5 to 46.1 Wm-2K-1 as the oscillation frequency increases from 6.0 to 19.3 Hz. A correlation for the Nusselt number on the inside of the heat exchange tubes in oscillatory flow is presented in a concise, dimensionless form in terms of the kinetic Reynolds number as a result of a statistical analysis. The test apparatus design is proven to be successful throughout its implementation due to the usefulness of data and clear trends observed. The author is not aware of any other publicly-available research on a Stirling engine cooler to the extent presented in this paper. Therefore, the present results are analyzed on a part-by-part basis and compared to segments of other research; however, strong correlations with data from other studies are not expected. The data presented in this paper are part of a continuing effort to better understand heat transfer properties in Stirling engines as well as other oscillating flow applications.
ContributorsEppard, Erin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150210-Thumbnail Image.png
Description
Trenchless technologies have emerged as a viable alternative to traditional open trench methods for installing underground pipelines and conduits. Pilot Tube Microtunneling, also referred to as the pilot tube system of microtunneling, guided auger boring, or guided boring method, is a recent addition to the family of trenchless installation methods.

Trenchless technologies have emerged as a viable alternative to traditional open trench methods for installing underground pipelines and conduits. Pilot Tube Microtunneling, also referred to as the pilot tube system of microtunneling, guided auger boring, or guided boring method, is a recent addition to the family of trenchless installation methods. Pilot tube microtunneling originated in Japan and Europe, and was introduced to the United States in the year 1995 (Boschert 2007). Since then this methodology has seen increased utilization across North America particularity in municipal markets for the installation of gravity sewers. The primary reason contributing to the growth of pilot tube microtunneling is the technology's capability of installing pipes at high precision in terms of line and grade, in a wide range of ground conditions using relatively inexpensive equipment. The means and methods, applicability, capabilities and limitations of pilot tube microtunneling are well documented in published literature through many project specific case studies. However, there is little information on the macroscopic level regarding the technology and industry as a whole. With the increasing popularity of pilot tube microtunneling, there is an emerging need to address the above issues. This research effort surveyed 22 pilot tube microtunneling contractors across North America to determine the current industry state of practice with the technology. The survey examined various topics including contractor profile and experience; equipment, methods, and pipe materials utilized; and issues pertaining to project planning and construction risks associated with the pilot tube method. The findings of this research are based on a total of 450 projects completed with pilot tube microtunneling between 2006 and 2010. The respondents were diverse in terms of their experience with PTMT, ranging from two to 11 years. A majority of the respondents have traditionally provided services with other trenchless technologies. As revealed by the survey responses, PTMT projects grew by 110% between the years 2006 and 2010. It was found that almost 72% of the 450 PTMT projects completed between 2006 and 2010 by the respondents were for sanitary sewers. Installation in cobbles and boulders was rated as the highest risk by the contractors.
ContributorsGottipati, Vamseedhar (Author) / Lueke, Jason S (Thesis advisor) / Ariaratnam, Samuel T (Committee member) / Chasey, Allan (Committee member) / Arizona State University (Publisher)
Created2011
150215-Thumbnail Image.png
Description
Multiphase flows are an important part of many natural and technological phe- nomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impos- sible and

Multiphase flows are an important part of many natural and technological phe- nomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impos- sible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This disserta- tion describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier- Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational architectures. In the first system, the code's ability to handle surface tension and large tem- perature gradients is established. In the second system, the code's ability to sim- ulate simple interface geometries with strong shear is demonstrated. In the third system, the ability to handle extremely complex geometries and topology changes with strong shear is shown.
ContributorsBrady, Peter, Ph.D (Author) / Herrmann, Marcus (Thesis advisor) / Lopez, Juan (Thesis advisor) / Adrian, Ronald (Committee member) / Calhoun, Ronald (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150153-Thumbnail Image.png
Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
ContributorsShortridge, Randall (Author) / Chen, Kang Ping (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Huang, Huei-Ping (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2011