Matching Items (2)
Filtering by

Clear all filters

Description
The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.
ContributorsShuster, Eden S. (Author) / Thanga, Jekan (Thesis director) / Asphaug, Erik (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

All civilization requires some sort of infrastructure to provide an essential service. Roads, bridges, pipelines, railroads, etc. are all critical in maintaining our society, but when they fail, they pose a serious threat to the economy, public safety, and environment. This is why it has become increasingly important to invest

All civilization requires some sort of infrastructure to provide an essential service. Roads, bridges, pipelines, railroads, etc. are all critical in maintaining our society, but when they fail, they pose a serious threat to the economy, public safety, and environment. This is why it has become increasingly important to invest in and research the field of Structural Health Monitoring (SHM) to ensure the safety and reliability of our infrastructure. This research paper delves into the optimization of a Lizard-inspired Tube Inspection (LTI) robot, with the primary focus on the inspection side of SHM through the use of Electro Magnetic Acoustic Transducer (EMAT), a Non-Destructive Testing (NDT) method. The robot is designed to inspect power plants piping for damage or defects, and its ability to detect issues early, results in improved plant efficiency, enhanced structural data collection, and increased safety. An iterative, reliable design was constructed by reducing the weight and addressing previous design flaws and then tested. Solidworks was used to calculate theoretical weight, applied stress, and displacements for the design modifications.. The overall reduction in weight was around 12.4% of the previous design. While this research successfully reduced the robot's weight and resolved issues in its design, further optimization is still necessary. Future studies should investigate the finger and friction pad design, robot control, and ways to reduce the reliance on commercial off-the-shelf parts. This will expand the robot’s inspection capabilities, making it applicable in other industries where NDT is critical to ensure structural integrity and safety, such as the pipes in oil and gas refineries, water treatment plants, and chemical processing plants, innovating the way infrastructure is monitored and maintained.

ContributorsMorris-Sjolund, Drake (Author) / Marvi, Hamidreza (Thesis director) / Lee, Hyunglae (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05