Matching Items (50)
Filtering by

Clear all filters

155288-Thumbnail Image.png
Description
Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one of these conditions. The bi-layer coating also delays condensation on the exterior surface at least ten times longer than identical system without antifreeze.

It is demonstrated that the significant delay in condensation onset is due to the integral humidity sink effect posed by the hygroscopic antifreeze liquid infused in the porous structure. This effect significantly alters the water vapor concentration field at the coating surface, which delays nucleation of drops and ice. It was demonstrated that with a proper design of the environmental chamber the size of the region of inhibited condensation and condensation frosting around an isolated pore, as well as periodically spaced pores, filled by propylene glycol can be quantitatively predicted from quasi-steady state water vapor concentration field. Theoretical analysis and experiments revealed that the inhibition of nucleation is governed by only two non-dimensional geometrical parameters: the pore size relative to the unit cell size and the ratio of the unit cell size to the thickness of the boundary layer. It is demonstrated that by switching the size of the pores from millimeters to nanometers, a dramatic depression of the nucleation onset temperature, as well as significantly greater delay in nucleation onset can be achieved.
ContributorsSun, Xiaoda (Author) / Rykaczewski, Konrad (Thesis advisor) / Lin, Jerry (Committee member) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Herrmann, Marcus (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
155231-Thumbnail Image.png
Description
Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are still prone to physical degradation and lack durability. In contrast to surface engineering, this thesis focuses on altering the bulk composition and the interior of a material to tune how an exterior surface would interact with liquids. Fundamental and applied aspects of engineering of two material systems with low contact angle hysteresis (i.e. ability to easily shed droplets) are explained. First, water-shedding metal matrix hydrophobic nanoparticle composites with high thermal conductivity for steam condensation rate enhancement are discussed. Despite having static contact angle <90° (not hydrophobic), sustained dropwise steam condensation can be achieved at the exterior surface of the composite due to low contact angle hysteresis (CAH). In order to explain this observation, the effect of varying the length scale of surface wetting heterogeneity over three orders of magnitude on the value of CAH was experimentally investigated. This study revealed that the CAH value is primarily governed by the pinning length which in turn depends on the length scale of wetting heterogeneity. Modifying the heterogeneity size ultimately leads to near isotropic wettability for surfaces with highly anisotropic nanoscale chemical heterogeneities. Next, development of lubricant-swollen polymeric omniphobic protective gear for defense and healthcare applications is described. Specifically, it is shown that the robust and durable protective gear can be made from polymeric material fully saturated with lubricant that can shed all liquids irrespective of their surface tensions even after multiple contact incidences with the foreign objects. Further, a couple of schemes are proposed to improve the rate of lubrication and replenishment of lubricant as well as reduce the total amount of lubricant required in making the polymeric protective gear omniphobic. Overall, this research aims to understand the underlying physics of dynamic surface-liquid interaction and provides simple scalable route to fabricate better materials for condensers and omniphobic protective gear.
ContributorsDamle, Viraj (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Lin, Jerry (Committee member) / Herrmann, Marcus (Committee member) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
168682-Thumbnail Image.png
Description
In convective heat transfer processes, heat transfer rate increases generally with a large fluid velocity, which leads to complex flow patterns. However, numerically analyzing the complex transport process and conjugated heat transfer requires extensive time and computing resources. Recently, data-driven approach has risen as an alternative method to solve physical

In convective heat transfer processes, heat transfer rate increases generally with a large fluid velocity, which leads to complex flow patterns. However, numerically analyzing the complex transport process and conjugated heat transfer requires extensive time and computing resources. Recently, data-driven approach has risen as an alternative method to solve physical problems in a computational efficient manner without necessitating the iterative computations of the governing physical equations. However, the research on data-driven approach for convective heat transfer is still in nascent stage. This study aims to introduce data-driven approaches for modeling heat and mass convection phenomena. As the first step, this research explores a deep learning approach for modeling the internal forced convection heat transfer problems. Conditional generative adversarial networks (cGAN) are trained to predict the solution based on a graphical input describing fluid channel geometries and initial flow conditions. A trained cGAN model rapidly approximates the flow temperature, Nusselt number (Nu) and friction factor (f) of a flow in a heated channel over Reynolds number (Re) ranging from 100 to 27750. The optimized cGAN model exhibited an accuracy up to 97.6% when predicting the local distributions of Nu and f. Next, this research introduces a deep learning based surrogate model for three-dimensional (3D) transient mixed convention in a horizontal channel with a heated bottom surface. Conditional generative adversarial networks (cGAN) are trained to approximate the temperature maps at arbitrary channel locations and time steps. The model is developed for a mixed convection occurring at the Re of 100, Rayleigh number of 3.9E6, and Richardson number of 88.8. The cGAN with the PatchGAN based classifier without the strided convolutions infers the temperature map with the best clarity and accuracy. Finally, this study investigates how machine learning analyzes the mass transfer in 3D printed fluidic devices. Random forests algorithm is hired to classify the flow images taken from semi-transparent 3D printed tubes. Particularly, this work focuses on laminar-turbulent transition process occurring in a 3D wavy tube and a straight tube visualized by dye injection. The machine learning model automatically classifies experimentally obtained flow images with an accuracy > 0.95.
ContributorsKang, Munku (Author) / Kwon, Beomjin (Thesis advisor) / Phelan, Patrick (Committee member) / Ren, Yi (Committee member) / Rykaczewski, Konrad (Committee member) / Sohn, SungMin (Committee member) / Arizona State University (Publisher)
Created2022
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
189318-Thumbnail Image.png
Description
Sweat evaporation is fundamental to human thermoregulation, yet our knowledge of the microscale sweat droplet evaporation dynamics is very limited. To study sweat droplet evaporation, a reliable way to measure sweat evaporation rate from skin and simultaneously image the droplet dynamics through midwave infrared thermography (MWIR) or optical coherence tomography

Sweat evaporation is fundamental to human thermoregulation, yet our knowledge of the microscale sweat droplet evaporation dynamics is very limited. To study sweat droplet evaporation, a reliable way to measure sweat evaporation rate from skin and simultaneously image the droplet dynamics through midwave infrared thermography (MWIR) or optical coherence tomography (OCT) is required. Ventilated capsule is a common device employed for measuring sweat evaporation rates in physiological studies. However, existing designs of ventilated capsules with cylindrical flow chambers create unrealistic flow conditions that include flow separation and swirling. To address this problem, this thesis introduces a ventilated capsule with rectangular sweat evaporation area preceded by a diffuser section with geometry based on wind tunnel design guidelines. To allow for OCT or MWIR imaging, a provision to install an acrylic or a sapphire window directly over the exposed skin surface being measured is incorporated in the design. In addition to the capsule, a simplified artificial sweating surface that can supply water in a filmwise, single or multiple droplet form was developed. The performance of the capsule is demonstrated using the artificial sweating surface along with example MWIR imaging.
ContributorsRamesh, Rajesh (Author) / Rykaczewski, Konrad (Thesis advisor) / Kavouras, Stavros (Committee member) / Phelan, Patrick (Committee member) / Burke, Richard (Committee member) / Arizona State University (Publisher)
Created2023
187787-Thumbnail Image.png
Description
Human exposure to extreme heat is becoming more prevalent due to increasing urbanization and changing climate. In many extreme heat conditions, thermal radiation (from solar to emitted by the surrounding) is a significant contributor to heating the body, among other modes of heat transfer. Therefore, accurately measuring radiative heat

Human exposure to extreme heat is becoming more prevalent due to increasing urbanization and changing climate. In many extreme heat conditions, thermal radiation (from solar to emitted by the surrounding) is a significant contributor to heating the body, among other modes of heat transfer. Therefore, accurately measuring radiative heat flux on a human body is becoming increasingly important for calculating human thermal comfort and heat safety in extreme conditions. Most often, radiant heat exchange between the human body and surroundings is quantified using mean radiant temperature, T_mrt. This value is commonly measured using globe or cylindrical radiometers. It is based on radiation absorbed by the surface of the radiometer, which can be calculated using a surface energy balance involving both convection and emitted radiation at steady state. This convection must be accounted for and is accomplished using a traditional heat transfer coefficient correlation with measured wind speed. However, the utilized correlations are based on wind tunnel measurements and do not account for any turbulence present in the air. The latter can even double the heat transfer coefficient, so not accounting for it can introduce major errors in T_mrt. This Thesis focuses on the development, and testing of a cost-effective heated cylinder to directly measure the convection heat transfer coefficient in field conditions, which can be used for accounting convection in measuring T_mrt using a cylindrical radiometer. An Aluminum cylinder of similar dimensions as that of a cylindrical radiometer was heated using strip heaters, and the surface temperature readings were recorded to estimate the convection heat transfer coefficient, h. Various tests were conducted to test this concept. It was observed that heated cylinders take significantly less time to reach a steady state and respond to velocity change quicker than existing regular-sized globe thermometers. It was also shown that, for accurate estimation of h, it is required to measure the outer surface temperature than the center temperature. Furthermore, the value calculated matches well in range with classic correlations that include velocity, showing proof of concept.
ContributorsGuddanti, Sai Susmitha (Author) / Rykaczewski, Konrad (Thesis advisor) / Vanos, Jennifer (Committee member) / Wang, Robert (Committee member) / Burke, Richard (Committee member) / Arizona State University (Publisher)
Created2023
189306-Thumbnail Image.png
Description
Expedited by the ongoing effects of the Covid-19 pandemic and the expanding portfolio of Arizona State University's online degree programs, this study undertakes the task of enriching the “Experimental Mechanical Engineering” course within ASU's online Bachelor of Mechanical Engineering curriculum. This thesis outlines the development of simulations accurately mirroring the

Expedited by the ongoing effects of the Covid-19 pandemic and the expanding portfolio of Arizona State University's online degree programs, this study undertakes the task of enriching the “Experimental Mechanical Engineering” course within ASU's online Bachelor of Mechanical Engineering curriculum. This thesis outlines the development of simulations accurately mirroring the characteristics and functionalities of water pump laboratory experiments, which previously necessitated on-site, group-based participation. The goal is for these simulations to serve as digital twins of the original equipment, allowing students to examine fundamental mechanical principles like the Bernoulli equation and Affinity Laws in a virtual, yet realistic setting. Furthermore, the simulations are designed to accommodate uncertainty calculations, replicating the instrument error (i.e., bias and precision uncertainty) inherent in the original water pump units. The methodology of this simulation design predominantly involves the use of MATLAB SimScape, chosen for its configurability and simplicity, with modifications made to match the original experiment data. Then, subsequent analysis of results between the simulation and experiment is conducted to facilitate the validation process. After executing the full laboratory procedure using the simulations, they displayed rapid operation and produced results that remained within boundaries of experimental uncertainty, it also faces several challenges, such as the inability to simulate the pump cavitation effect and the lack of animation. Future research should focus on addressing these limitations, thereby enhancing the model’s precision and extending its functionality to provide better visualization capabilities and exploration of pump cavitation effects. Furthermore, students’ feedback needs to be collected, since it is essential to assess and validate the effectiveness of this instructional approach.
ContributorsZhong, Ziming (Author) / Milcarek, Ryan J (Thesis advisor) / Wilbur, Joshua D (Thesis advisor) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2023
187629-Thumbnail Image.png
Description
Solid Oxide Fuel Cells (SOFCs) generate electricity using only hydrogen and oxygen and they form H2O as the only byproduct, giving them the potential to significantly reduce carbon emissions and the impacts of global warming. In order to meet the global power demands today, SOFCs need to significantly increase their

Solid Oxide Fuel Cells (SOFCs) generate electricity using only hydrogen and oxygen and they form H2O as the only byproduct, giving them the potential to significantly reduce carbon emissions and the impacts of global warming. In order to meet the global power demands today, SOFCs need to significantly increase their power density and improve robustness in startup and cycling operations. This study explores the impact of decreasing the anode thickness to improve the mass transport of the fuel through the anode of a micro-tubular (mT) SOFC because few studies have reported the correlation between the two. Decreasing the thickness decreases the chance for concentration overpotential which is caused by not enough of the reactants being able to reach the reaction site while products are not able to be removed quickly enough. Experiments were performed in a split tube furnace heated to 750°C with nickel-yttria stabilized zirconia (Ni-YSZ) supported cells. Pure hydrogen was supplied to the cell at rates of 10, 20, 30, and 40 mL/min while the cathode was supplied air from the environment. The cell's performance was studied using the current-voltage method to generate polarization curves and electrochemical impedance spectroscopy to create Bode and Nyquist plots. The results from the electrochemical impedance spectroscopy show a lower impedance for the frequencies pertaining to the gas diffusion in the anode for the thinner cells. This suggests that decreasing the anode thickness increases the mass transport of the gas. Additionally, through a distribution of relaxation times (DRT) analysis, the peaks vary between the two cell thicknesses at the frequencies pertaining to gas diffusion in anode-supported cells, implicating the decreased resistance created by thinning the anode layer.
ContributorsPhillips, Kristina (Author) / Milcarek, Ryan (Thesis advisor) / Wang, Robert (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2023
187525-Thumbnail Image.png
Description
Progressive miniaturization in electronics demands advanced materials with excellent energy conversion and transport properties. Opportunities exist in novel material morphologies such as hierarchical structures, multi-functional composites and nanoscale architectures which may offer mechanical, thermal and electronic properties tailored to a wide range of applications (e.g., aerospace, robotics, biomedical etc.). However,

Progressive miniaturization in electronics demands advanced materials with excellent energy conversion and transport properties. Opportunities exist in novel material morphologies such as hierarchical structures, multi-functional composites and nanoscale architectures which may offer mechanical, thermal and electronic properties tailored to a wide range of applications (e.g., aerospace, robotics, biomedical etc.). However, the manufacturing capabilities have always posed a grand challenge in realizing the advanced material morphologies. Furthermore, the multi-scale modeling of complex material architectures has been extremely challenging owing to the limitations in computation methodologies and lack of understanding in nano-/micro-meter scale physics. To address these challenges, this work considers the morphology effect on carbon nanotube (CNT)-based composites, CNT fibers and thermoelectric (TE) materials. First, this work reports additively manufacturable TE morphologies and analyzes the thermo-electric transport behavior. This research introduces innovative honeycomb TE architectures that showed ~26% efficiency increase and ~25% density reduction compared to conventional rectangular TE architectures. Moreover, this work presents 3D printable compositionally segmented TE architecture which provides record-high efficiencies (up to 8.7%) over wide temperature ranges if the composition and aspect ratio of multiple TE materials are optimized within a single TE device. Next, this research proposes computationally efficient two-dimensional (2D) finite element model (FEM) to study the electrical and thermal properties in CNT based composites by simultaneously considering the stochastic CNT distributions, CNT fractions (upto 80%) and interfacial resistances. The FEM allows to estimate the theoretical maximum possible conductivities with corresponding interfacial resistances if the CNT morphologies are carefully controlled, along with appreciable insight into the energy transport physics. Then, this work proposes a data-driven surrogate model based on convolutional neural networks to rapidly approximate the composite conductivities in a second with accuracy > 98%, compared to FEM taking >100 minutes per simulation. Finally, this research presents a pseudo 2D FEM to approximate the electrical and thermal properties in CNT fibers at various CNT aspect ratios (up to 10,000) by simultaneously considering CNT-CNT interfacial effects along with the stochastic distribution of inter-bundle voids.
ContributorsEjaz, Faizan (Author) / Kwon, Beomjin (Thesis advisor) / Zhuang, Houlong (Committee member) / Song, Kenan (Committee member) / Wang, Robert (Committee member) / Kang, Wonmo (Committee member) / Arizona State University (Publisher)
Created2023
187476-Thumbnail Image.png
Description
Gallium based room-temperature liquid metals (LMs) have special properties such as metal-like high thermal conductivity while in the liquid state. They are suitable for many potential applications, including thermal interface materials, soft robotics, stretchable electronics, and biomedicine. However, their high density, high surface tension, high reactivity with other metals, and

Gallium based room-temperature liquid metals (LMs) have special properties such as metal-like high thermal conductivity while in the liquid state. They are suitable for many potential applications, including thermal interface materials, soft robotics, stretchable electronics, and biomedicine. However, their high density, high surface tension, high reactivity with other metals, and rapid oxidation restrict their applicability. This dissertation introduces two new types of materials, LM foams, and LM emulsions, that address many of these issues. The formation mechanisms, thermophysical properties, and example applications of the LM foams and emulsions are investigated.LM foams can be prepared by shear mixing the bulk LM in air using an impeller. The surface oxide layer is sheared and internalized into the bulk LM as crumpled oxide flakes during this process. After a critical amount of oxide flakes is internalized, they start to stabilize air bubbles by encapsulating and oxide-bridging. This mechanism enables the fabrication of a LM foam with improved properties and better spreadability. LM emulsions can be prepared by mixing the LM foam with a secondary liquid such as silicone oil (SO). By tuning a few factors such as viscosity of the secondary liquid, composition, and mixing duration, the thermophysical properties of the emulsion can be controlled. These emulsions have a lower density, better spreadability, and unlike the original LM and LM foam, they do not induce corrosion of other metals. LM emulsions can form by two possible mechanisms, first by the secondary liquid replacing air features in the existing foam pores (replacement mechanism) and second by creating additional liquid features within the LM foam (addition mechanism). The latter mechanism requires significant oxide growth and therefore requires presence of oxygen in the environment. The dominant mechanism can therefore be distinguished by mixing LM foam with the SO in air and oxygen-free environments. Additionally, a comprehensive analysis of foam-to-emulsion density change, multiscale imaging and surface wettability confirm that addition mechanism dominates the emulsion formation. These results provide insight into fundamental processes underlying LM foams and emulsions, and they set up a foundation for preparing LM emulsions with a wide range of fluids and controllable properties.
ContributorsShah, Najam Ul Hassan (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Phelan, Patrick (Committee member) / Green, Matthew D. (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023