Matching Items (4)
Filtering by

Clear all filters

135235-Thumbnail Image.png
Description
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating,

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.
ContributorsSuresh Kumar, Reshma (Author) / Chen, Qiang (Thesis director) / Zhang, Peiming (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133038-Thumbnail Image.png
Description
Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that

Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that they do not have the correct cellular localization. The localization of PANK2 was studied through cellular fractionation. We found the precursor form of PANK2, pPANK2, appears to be anchored to the inner membrane of the mitochondria, and the mature form, mPANK2, is located in the inter-membrane space, IMS. However, the IMS of the PKAN causing mutants is completely devoid of mPANK2 which suggests some disease-causing mutations may be mislocalized. In addition, PANK2 catalyzes the first and rate limiting step in Coenzyme A biosynthesis, and in other studies, it has been shown that the CoA biosynthesis enzymes form a complex in yeast. Therefore, we also considered the possibility that PKAN-causing mutations that retain activity have altered interactions with the other CoA biosynthesis enzymes. Coimmunoprecipitation of the proteins in the pathway was done to determine if there were any interactions with PANK2. The results indicate that PANK2 does not directly interact with either PPCS or CoASY, the second and final enzymatic activities in the CoA biosynthesis pathway.
ContributorsHadziahmetovic, Una (Author) / Newbern, Jason (Thesis director) / Kruer, Michael (Thesis director) / Padilla-Lopez, Sergio (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134374-Thumbnail Image.png
Description
The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from

The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from Mtb controlled by Pmyc1_tetO, a deletion mutant, and a deletion mutant complemented with prrAB from M. smegmatis controlled by the native prrAB promoter sequence (~167 bp upstream sequence of prrAB). In a previous study, the prrAB deletion mutant clumped excessively relative to the wild-type strain when cultured in a nitrogen-limited medium. To address this irregularity, the lipid profiles of these mutants were analyzed through several experimental methods. Untargeted lipidomic profiles were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS). The ESI-MS data suggested the deletion mutant accumulates triacylglycerol species relative to the wild-type strain. This data was verified by thin-layer chromatography (TLC) and densitometry of the TLC images. The mycolic acid profile of each mutant was also analyzed by TLC but no noteworthy differences were found. High-throughput RNA-Seq analysis revealed several genes involved in lipid biosynthetic pathways upregulated in the prrAB deletion mutant, thus corroborating the ESI-MS and TLC data.
ContributorsOlson, Alexandra Nadine (Author) / Haydel, Shelley (Thesis director) / Bean, Heather (Committee member) / Maarsingh, Jason (Committee member) / School of Social Transformation (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

The objective of this study is to create a spectrophotometric assay that can measure quinone reduction in the HbRC. The key techniques used in the project consisted of a PCR, a pseudo golden gate, a transformation into E. coli, a conjugation into Heliomicrobium modesticaldum, a growth study, a HbRC prep,

The objective of this study is to create a spectrophotometric assay that can measure quinone reduction in the HbRC. The key techniques used in the project consisted of a PCR, a pseudo golden gate, a transformation into E. coli, a conjugation into Heliomicrobium modesticaldum, a growth study, a HbRC prep, and absorbance spectroscopy. PCR was crucial for amplifying the Cyt c553-PshX gene for the pseudo golden gate. The pseudo golden gate ligated Cyt c553-PshX into the plasmid pMTL86251 in order to transform the plasmid with the desired gene into the E. coli strain S17-1. This E. coli strain allows for conjugation into H. modesticaldum. H. modesticaldum cannot uptake DNA by itself, so the E. coli creates a pilus to transfer the desired plasmid to H. modesticaldum. The growth study was crucial for determining if H. modesitcaldum could be induced using xylose without killing the cells or inhibiting the growth in such a way that the project could not be continued. The HbRC prep was used to isolate and purify the Cyt c553-PshX protein. Absorbance spectroscopy and JTS kinetic assay was used to characterize and confirm that the protein eluted from the affinity column was Cyt c553-PshX. The results of the absorbance spectra and JTS kinetic assay confirmed that Cyt c553-PshX was not made. The study is currently being continued using a new system that utilizes SpyCatcher SpyTag covalent linkages in order to attach cytochrome to reduce P800 to the HbRC.

ContributorsBarnes, Katherine (Author) / Redding, Kevin (Thesis director) / Mazor, Yuval (Committee member) / Singharoy, Abhishek (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of English (Contributor)
Created2022-12