Matching Items (25)
Filtering by

Clear all filters

158627-Thumbnail Image.png
Description
Coccidioidomycosis or Valley Fever (VF) is an emerging fungal respiratory infection endemic to the southwest region of the United States, and parts of Mexico, Central and South America. Satellite cases have also been reported in Washington and Oregon. It is estimated that in Maricopa County alone, VF accounts for

Coccidioidomycosis or Valley Fever (VF) is an emerging fungal respiratory infection endemic to the southwest region of the United States, and parts of Mexico, Central and South America. Satellite cases have also been reported in Washington and Oregon. It is estimated that in Maricopa County alone, VF accounts for 10-30% of community-acquired pneumonia. Difficulty in diagnosis is largely attributed to lack of antibody reactivity to antigens used in diagnosis, especially early in disease. Serological detection of VF employs mycelial-phase culture filtrates as antigen. While culture filtrates are thought to provide the most specific diagnostic antigen, preparation includes the growth of large volume Coccidioides cultures which require employment of extensive safety precautions in a BSL3 setting. An additional concern with use of culture filtrates as an antigen source is batch variability, as expression of immunogenic proteins within each lot are variable. To address safety and batch variability concerns, this thesis proposes the use of recombinant Coccidioides proteins as a consistent and reliable antigen source. For the purpose of this study, I expressed known antigenic Coccidioides proteins in a eukaryotic, recombinant protein expression system. Recombinant endochitinase-1 (rCTS1) and recombinant heat-labile antigen (rHL-Ag) were evaluated for serologic reactivity by ELISA, using a sample set of 55 known serologically positive and 55 known negative human sera specimens, previously tested in Mayo Clinic Arizona (MCA) serologic laboratories. Evaluation by ELISA demonstrated 94.55% sensitivity and 92.72% specificity using combined rCTS1 and rHL-Ag as an antigen source, indicating promising diagnostic utility.
ContributorsRoeder, Alexa Jordan (Author) / Lake, Douglas (Thesis advisor) / Grys, Thomas (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2020
161735-Thumbnail Image.png
Description
Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme

Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme responsible for catalyzing hydrolysis of TG to diacylglycerol (DAG), the initial step of the lipolytic reaction. G0/G1 switch gene-2 (G0S2) and hypoxia-inducible gene-2 (HIG2) are selective inhibitors of ATGL. G0S2 facilitates accumulation of TG in the liver and adipose tissue, while HIG2 functions under hypoxic conditions. Sequence analysis and mutagenesis were used to confirm the presence of conserved domains between these proteins, and that these domains are required for efficient binding and inhibition of ATGL. Further analysis revealed a Positive sequence (Pos-Seq)-LD binding motif in G0S2 but not HIG2. The Pos-Seq mediated ATGL-independent localization to LD and was required for achieving maximal inhibition of ATGL activity by G0S2. Identification and mutational analysis of this motif revealed distinct mechanisms for HIG2 and G0S2 LD association. In addition to molecular characterization of known protein inhibitors of lipolysis, an intracellular member of the apolipoprotein L (ApoL) family, ApoL6, was also identified as a LD and mitochondria associated protein expressed in adipose tissue. Brown adipose tissue uses fatty acids as fuel for increasing its energy output as heat during acute responses to cold exposure. A Comprehensive Lab Animal Monitoring System was used to compare heat production at room temperature (RT) and 4oC in transgenic animals overexpressing ApoL6 in brown adipose tissue. Overexpression of ApoL6 delayed utilization of long-chain fatty acids (LCFAs) as a fuel source while promoting an enhanced thermogenic response during initial cold exposure. ApoL6 mediated inhibition of LCFA utilization results from binding of ApoL6 to Mitochondrial Trifunctional Protein (MTP/TFP), which catalyzes mitochondrial β-oxidation. Indirect calorimetry and fasting acute cold exposure experiments suggest the augmented thermogenic profile of ApoL6 transgenic animals is a result of enhanced utilization of medium-chain fatty acids (MCFAs), glucose, and amino acids as fuel sources. Cumulatively these results indicate multiple mechanisms for regulation lipolysis and fatty acid utilization.
ContributorsCampbell, Latoya E (Author) / Lake, Douglas (Thesis advisor) / Liu, Jun (Committee member) / Folmes, Clifford (Committee member) / Sweazea, Karen (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2021
161269-Thumbnail Image.png
Description
Environmental stressors can perturb cellular homeostasis. Cells activate an integrated stress response that will alleviate the effects of the ongoing stress. Stress-activated protein kinases function to phosphorylate the eukaryotic translation initiation factor, eIF2α, which results in inhibition of translation of house-keeping genes. Following these events, formation of cytoplasmic messenger ribonucleoprotein

Environmental stressors can perturb cellular homeostasis. Cells activate an integrated stress response that will alleviate the effects of the ongoing stress. Stress-activated protein kinases function to phosphorylate the eukaryotic translation initiation factor, eIF2α, which results in inhibition of translation of house-keeping genes. Following these events, formation of cytoplasmic messenger ribonucleoprotein complexes, known as stress granules, will take place. Stress granules typically have a pro-survival function. These studies demonstrate that assembly of stress granules can also lead to necroptosis. Necroptosis is a caspase-independent, receptor-interacting protein kinase 3 (RIPK3)-dependent cell death pathway executed by mixed lineage kinase domain-like (MLKL) protein. Cellular stress is induced using arsenite (oxidative stress) or by infection with vaccinia virus (VACV) E3 protein Z-DNA-binding domain mutant, VACV-E3LΔ83N. In both cases, RIPK3-dependent death was observed in interferon (IFN)-primed L929 cells. This death led to phosphorylation and trimerization of MLKL, indicative of necroptosis. Necroptosis induced by oxidative stress and VACV-E3LΔ83N infection was dependent on the host Z-form nucleic acid sensor, DNA-dependent activator of IFN-regulatory factors (DAI), as it was inhibited in DAI-deficient L929 cells. Under both cellular stresses, DAI associated with RIPK3 and formed high-molecular-weight complexes, consistent with formation of the necrosomes. DAI localized into stress granules during necroptosis induced by arsenite and the mutant virus, and the necrosomes formed only in presence of stress granule assembly. The significance of stress granules for cellular stress-induced necroptosis was demonstrated using knock-out (KO) cell lines unable to form granules: T cell-restricted intracellular antigen 1 (TIA-1) KO MEF cells and Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1/2) KO U2OS cells. Necroptosis was inhibited in absence of stress granule formation as no cell death or activation of MLKL was observed in the knock-out cell lines following arsenite treatment or VACV-E3LΔ83N infection. Furthermore, wild-type VACV was able to inhibit stress granule assembly, which coincided with the virus ability to inhibit necroptosis. These studies have led to a model of Z-form nucleic acids being involved in activation of the stress granule-mediated necroptosis following induction by environmental stressors. These results have significance for understanding the etiology of human diseases and the antiviral innate immunity.
ContributorsSzczerba, Mateusz Bartlomiej (Author) / Jacobs, Bertram L (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2021
161272-Thumbnail Image.png
Description
Staphylococcus aureus permanently asymptomatically colonizes one-third of humans, yet is an opportunistic pathogen causing life threatening diseases. Diagnosing S. aureus infections requires differentiating S. aureus from the human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all people. These studies aimed to characterize the volatile metabolites of S. aureus

Staphylococcus aureus permanently asymptomatically colonizes one-third of humans, yet is an opportunistic pathogen causing life threatening diseases. Diagnosing S. aureus infections requires differentiating S. aureus from the human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all people. These studies aimed to characterize the volatile metabolites of S. aureus and S. epidermidis, and to measure the influence of growth medium on the discovery of volatile organic compounds that differentiate them. Headspace solid-phase microextraction and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detected 337 S. aureus and S. epidermidis headspace volatiles produced during aerobic growth in four complex media. Analyses revealed that only 20 – 40% of staph volatiles are produced by both species in any one medium. Using principal components and hierarchical clustering analyses of the staphylococcal volatiles showed individual clustering of S. aureus and S. epidermidis independent of culturing media but clustering of replicate cultures by growth medium within species. Subsets of volatiles produced in common by both species, or in common across all four media, revealed volatilome differences between S. aureus and S. epidermidis based on the volatiles’ relative abundances. When analyzing volatiles by relative abundances, culturing staph in media containing free glucose (brain heart infusion and tryptic soy broth) revealed volatilomes dominated by acids and esters (67%). The low-glucose media (lysogeny broth and Mueller-Hinton broth) yielded ketones in greatest relative abundances, yet also produced highly dissimilar volatilome compositions. The staphylococcal volatilome is strongly influenced by the nutritional composition of growth medium, especially free glucose availability, which is robustly evident when analyzing the relative abundances of the volatiles, compared to their presence versus absence. Future work will evaluate more strains of each species, testing the universality of these results. Prospective analyses involve hypotheses testing on the role of catabolite repression control and glucose availability on the volatilome, with plans to model in vitro culture conditions that replicate in vivo volatilomes. Studies assessing correlations of virulence to species-specific volatilome responses to free glucose may identify pathogenic strains of S. epidermidis and other staphylococcal commensals.
ContributorsJenkins, Carrie L. (Author) / Bean, Heather D (Thesis advisor) / Buetow, Kenneth H (Committee member) / Lake, Douglas (Committee member) / Wilson-Rawls, Jeanne (Committee member) / Arizona State University (Publisher)
Created2021
155733-Thumbnail Image.png
Description
Acute Myeloid Leukemia (AML) is a disease that occurs when genomic changes alter expression of key genes in myeloid blood cells. These changes cause them to resume an undifferentiated state, proliferate, and maintain growth throughout the body. AML is commonly treated with chemotherapy, but recent efforts to reduce therapy toxicity

Acute Myeloid Leukemia (AML) is a disease that occurs when genomic changes alter expression of key genes in myeloid blood cells. These changes cause them to resume an undifferentiated state, proliferate, and maintain growth throughout the body. AML is commonly treated with chemotherapy, but recent efforts to reduce therapy toxicity have focused on drugs that specifically target and inhibit protein products of the cancer’s aberrantly expressed genes. This method has proved difficult for some proteins because of structural challenges or mutations that confer resistance to therapy. One potential method of targeted therapy that circumvents these issues is the use of small molecules that stabilize DNA secondary structures called G-quadruplexes. G-quadruplexes are present in the promoter region of many potential oncogenes and have regulatory roles in their transcription. This study analyzes the therapeutic potential of the compound GQC-05 in AML. This compound was shown in vitro to bind and stabilize the regulatory G-quadruplex in the MYC oncogene, which is commonly misregulated in AML. Through qPCR and western blot analysis, a GQC-05 mediated downregulation of MYC mRNA and protein was observed in AML cell lines with high MYC expression. In addition, GQC-05 is able to reduce cell viability through induction of apoptosis in sensitive AML cell lines. Concurrent treatment of AML cell lines with GQC-05 and the MYC inhibitor (+)JQ1 showed an antagonistic effect, indicating potential competition in the silencing of MYC. However, GQC-05 is not able to reduce MYC expression significantly enough to induce apoptosis in less sensitive AML cell lines. This resistance may be due to the cells’ lack of dependence on other potential GQC-05 targets that may help upregulate MYC or stabilize its protein product. Three such genes identified by RNA-seq analysis of GQC-05 treated cells are NOTCH1, PIM1, and RHOU. These results indicate that the use of small molecules to target the MYC promoter G-quadruplex is a viable potential therapy for AML. They also support a novel mechanism for targeting other potentially key genetic drivers in AML and lay the groundwork for advances in treatment of other cancers driven by G-quadruplex regulated oncogenes.
ContributorsTurnidge, Megan (Author) / Lake, Douglas (Thesis advisor) / Kim, Suwon (Committee member) / Azorsa, David (Committee member) / Arizona State University (Publisher)
Created2017