Matching Items (7)
Filtering by

Clear all filters

135235-Thumbnail Image.png
Description
Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating,

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.
ContributorsSuresh Kumar, Reshma (Author) / Chen, Qiang (Thesis director) / Zhang, Peiming (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133038-Thumbnail Image.png
Description
Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that

Pantothenate kinase-associated neurodegeneration, PKAN, is a neurological disease that is caused by biallelic mutations in the PANK2 gene, which codes for a pantothenate kinase. Some PANK2 mutations that cause PKAN retain enzymatic activity. A possible explanation for the mutations that have residual activity but still cause the disease is that they do not have the correct cellular localization. The localization of PANK2 was studied through cellular fractionation. We found the precursor form of PANK2, pPANK2, appears to be anchored to the inner membrane of the mitochondria, and the mature form, mPANK2, is located in the inter-membrane space, IMS. However, the IMS of the PKAN causing mutants is completely devoid of mPANK2 which suggests some disease-causing mutations may be mislocalized. In addition, PANK2 catalyzes the first and rate limiting step in Coenzyme A biosynthesis, and in other studies, it has been shown that the CoA biosynthesis enzymes form a complex in yeast. Therefore, we also considered the possibility that PKAN-causing mutations that retain activity have altered interactions with the other CoA biosynthesis enzymes. Coimmunoprecipitation of the proteins in the pathway was done to determine if there were any interactions with PANK2. The results indicate that PANK2 does not directly interact with either PPCS or CoASY, the second and final enzymatic activities in the CoA biosynthesis pathway.
ContributorsHadziahmetovic, Una (Author) / Newbern, Jason (Thesis director) / Kruer, Michael (Thesis director) / Padilla-Lopez, Sergio (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134374-Thumbnail Image.png
Description
The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from

The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from Mtb controlled by Pmyc1_tetO, a deletion mutant, and a deletion mutant complemented with prrAB from M. smegmatis controlled by the native prrAB promoter sequence (~167 bp upstream sequence of prrAB). In a previous study, the prrAB deletion mutant clumped excessively relative to the wild-type strain when cultured in a nitrogen-limited medium. To address this irregularity, the lipid profiles of these mutants were analyzed through several experimental methods. Untargeted lipidomic profiles were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS). The ESI-MS data suggested the deletion mutant accumulates triacylglycerol species relative to the wild-type strain. This data was verified by thin-layer chromatography (TLC) and densitometry of the TLC images. The mycolic acid profile of each mutant was also analyzed by TLC but no noteworthy differences were found. High-throughput RNA-Seq analysis revealed several genes involved in lipid biosynthetic pathways upregulated in the prrAB deletion mutant, thus corroborating the ESI-MS and TLC data.
ContributorsOlson, Alexandra Nadine (Author) / Haydel, Shelley (Thesis director) / Bean, Heather (Committee member) / Maarsingh, Jason (Committee member) / School of Social Transformation (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

The objective of this study is to create a spectrophotometric assay that can measure quinone reduction in the HbRC. The key techniques used in the project consisted of a PCR, a pseudo golden gate, a transformation into E. coli, a conjugation into Heliomicrobium modesticaldum, a growth study, a HbRC prep,

The objective of this study is to create a spectrophotometric assay that can measure quinone reduction in the HbRC. The key techniques used in the project consisted of a PCR, a pseudo golden gate, a transformation into E. coli, a conjugation into Heliomicrobium modesticaldum, a growth study, a HbRC prep, and absorbance spectroscopy. PCR was crucial for amplifying the Cyt c553-PshX gene for the pseudo golden gate. The pseudo golden gate ligated Cyt c553-PshX into the plasmid pMTL86251 in order to transform the plasmid with the desired gene into the E. coli strain S17-1. This E. coli strain allows for conjugation into H. modesticaldum. H. modesticaldum cannot uptake DNA by itself, so the E. coli creates a pilus to transfer the desired plasmid to H. modesticaldum. The growth study was crucial for determining if H. modesitcaldum could be induced using xylose without killing the cells or inhibiting the growth in such a way that the project could not be continued. The HbRC prep was used to isolate and purify the Cyt c553-PshX protein. Absorbance spectroscopy and JTS kinetic assay was used to characterize and confirm that the protein eluted from the affinity column was Cyt c553-PshX. The results of the absorbance spectra and JTS kinetic assay confirmed that Cyt c553-PshX was not made. The study is currently being continued using a new system that utilizes SpyCatcher SpyTag covalent linkages in order to attach cytochrome to reduce P800 to the HbRC.

ContributorsBarnes, Katherine (Author) / Redding, Kevin (Thesis director) / Mazor, Yuval (Committee member) / Singharoy, Abhishek (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of English (Contributor)
Created2022-12
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171651-Thumbnail Image.png
Description
Metabolomics focuses on the study of metabolic changes occurring in varioussystems and utilizes quantitative and semi-quantitative measurements of multiple metabolites in parallel. Mass spectrometry (MS) is the most ubiquitous platform in this field, as it provides superior sensitivity regarding measurements of complex metabolic profiles in biological systems. When combined with

Metabolomics focuses on the study of metabolic changes occurring in varioussystems and utilizes quantitative and semi-quantitative measurements of multiple metabolites in parallel. Mass spectrometry (MS) is the most ubiquitous platform in this field, as it provides superior sensitivity regarding measurements of complex metabolic profiles in biological systems. When combined with MS, multivariate statistics and advanced machine learning algorithms provide myriad opportunities for bioinformatics insights beyond simple univariate data comparisons. In this dissertation, the application of MS-based metabolomics is introduced with an emphasis on biomarker discovery for human disease detection. To advance disease diagnosis using MS-based metabolomics, numerous statistical techniques have been implemented in this research including principal component analysis, factor analysis, partial least squares-discriminant analysis (PLS-DA), orthogonal PLS-DA, random forest, receiver operating characteristic analysis, as well as functional pathway/enzyme enrichment analyses. These approaches are highly useful for improving classification sensitivity and specificity related to disease-induced biological variation and can help identify useful biomarkers and potential therapeutic targets. It is also shown that MS-based metabolomics can distinguish between clinical and prodromal disease as well as similar diseases with related symptoms, which may assist in clinical staging and differential diagnosis, respectively. Additionally, MS-based metabolomics is shown to be promising for the early and accurate detection of diseases, thereby improving patient outcomes, and advancing clinical care. Herein, the application of MS methods and chemometric statistics to the diagnosis of breast cancer, coccidioidomycosis (Valley fever), and senile dementia (Alzheimer's disease) are presented and discussed. In addition to presenting original research, previous efforts in biomarker discovery will be synthesized and appraised. A Comment will be offered regarding the state of the science, specifically addressing the inefficient model of repetitive biomarker discovery and the need for increased translational efforts necessary to consolidate metabolomics findings and formalize purported metabolic markers as laboratory developed tests. Various factors impeding the translational throughput of metabolomics findings will be carefully considered with respect to study design, statistical analysis, and regulation of biomedical diagnostics. Importantly, this dissertation will offer critical insights to advance metabolomics from a scientific field to a practical one including targeted detection, enhanced quantitation, and direct-to-consumer considerations.
ContributorsJasbi, Paniz (Author) / Johnston, Carol S (Thesis advisor) / Gu, Haiwei (Thesis advisor) / Lake, Douglas F (Committee member) / Sweazea, Karen (Committee member) / Tasevska, Natasha (Committee member) / Arizona State University (Publisher)
Created2022
161735-Thumbnail Image.png
Description
Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme

Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme responsible for catalyzing hydrolysis of TG to diacylglycerol (DAG), the initial step of the lipolytic reaction. G0/G1 switch gene-2 (G0S2) and hypoxia-inducible gene-2 (HIG2) are selective inhibitors of ATGL. G0S2 facilitates accumulation of TG in the liver and adipose tissue, while HIG2 functions under hypoxic conditions. Sequence analysis and mutagenesis were used to confirm the presence of conserved domains between these proteins, and that these domains are required for efficient binding and inhibition of ATGL. Further analysis revealed a Positive sequence (Pos-Seq)-LD binding motif in G0S2 but not HIG2. The Pos-Seq mediated ATGL-independent localization to LD and was required for achieving maximal inhibition of ATGL activity by G0S2. Identification and mutational analysis of this motif revealed distinct mechanisms for HIG2 and G0S2 LD association. In addition to molecular characterization of known protein inhibitors of lipolysis, an intracellular member of the apolipoprotein L (ApoL) family, ApoL6, was also identified as a LD and mitochondria associated protein expressed in adipose tissue. Brown adipose tissue uses fatty acids as fuel for increasing its energy output as heat during acute responses to cold exposure. A Comprehensive Lab Animal Monitoring System was used to compare heat production at room temperature (RT) and 4oC in transgenic animals overexpressing ApoL6 in brown adipose tissue. Overexpression of ApoL6 delayed utilization of long-chain fatty acids (LCFAs) as a fuel source while promoting an enhanced thermogenic response during initial cold exposure. ApoL6 mediated inhibition of LCFA utilization results from binding of ApoL6 to Mitochondrial Trifunctional Protein (MTP/TFP), which catalyzes mitochondrial β-oxidation. Indirect calorimetry and fasting acute cold exposure experiments suggest the augmented thermogenic profile of ApoL6 transgenic animals is a result of enhanced utilization of medium-chain fatty acids (MCFAs), glucose, and amino acids as fuel sources. Cumulatively these results indicate multiple mechanisms for regulation lipolysis and fatty acid utilization.
ContributorsCampbell, Latoya E (Author) / Lake, Douglas (Thesis advisor) / Liu, Jun (Committee member) / Folmes, Clifford (Committee member) / Sweazea, Karen (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2021