Matching Items (18)
Filtering by

Clear all filters

152068-Thumbnail Image.png
Description
Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant

Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as a function of experience in both healthy and brain-injured animals by using intracortical microstimulation technique. Furthermore, synaptic plasticity has been identified as a key neural mechanism in directing motor map plasticity, evidenced by restoration of movement representations within the spared cortical tissue accompanied by increase in synapse number translating into motor improvement after stroke. There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Unfortunately, BDNF itself is a poor candidate because of its short half-life, low penetration through the blood brain barrier, and activating multiple receptor units, p75 and TrkB on the neuronal membrane. In order to circumvent this problem efficacy of two recently developed novel TrkB agonists, LM22A-4 and 7,8-dihydroxyflavone, that actively penetrate the blood brain barrier and enhance functional recovery. Findings from these dissertation studies indicate that administration of these pharmacological compounds, accompanied by motor rehabilitation provide a powerful therapeutic tool for stroke recovery.
ContributorsWarraich, Zuha (Author) / Kleim, Jeffrey A (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Tillery, Stephen-Helms (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
132526-Thumbnail Image.png
Description
In the United States, an estimated 2 million cases of traumatic brain injury (TBI) resulting in more than 50,000 deaths occur every year. TBI induces an immediate primary injury resulting in local or diffuse cell death in the brain. Then a secondary injury occurs through neuroinflammation from immune cells in

In the United States, an estimated 2 million cases of traumatic brain injury (TBI) resulting in more than 50,000 deaths occur every year. TBI induces an immediate primary injury resulting in local or diffuse cell death in the brain. Then a secondary injury occurs through neuroinflammation from immune cells in response to primary injury. Microglia, the resident immune cell of the central nervous system, play a critical role in neuroinflammation following TBI. Microglia make up 10% of all cells in the nervous system and are the fastest moving cells in the brain, scanning the entire parenchyma every several hours. Microglia have roles in both the healthy and injured brain. In the healthy brain, microglia can produce neuroprotective factors, clear cellular debris, and organize neurorestorative processes to recover from TBI. However, microglia mediated neuroinflammation during secondary injury produces pro-inflammatory and cytotoxic mediators contributing to neuronal dysfunction, inhibition of CNS repair, and cell death. Furthermore, neuroinflammation is a prominent feature in many neurodegenerative diseases such as Alzheimer’s, and Parkinson’s disease, of which include overactive microglia function. Microglia cell morphology, activation, and response to TBI is poorly understood. Currently, imaging microglia can only be performed while the animal is stationary and under anesthesia. The Miniscope technology allows for real-time visualization of microglia in awake behaving animals. The Miniscope is a miniature fluorescent microscope that can be implanted over a craniectomy to image microglia. Currently, the goals of Miniscope imaging are to improve image quality and develop time-lapse imaging capabilities. There were five main sub-projects that focused on these goals including surgical nose cone design, surgical holder design, improved GRIN lens setup, improved magnification through achromatic lenses, and time-lapse imaging hardware development. Completing these goals would allow for the visualization of microglia function in the healthy and injured brain, elucidating important immune functions that could provide new strategies for treating brain diseases.
ContributorsNelson, Andrew Frederick (Author) / Stabenfeldt, Sarah (Thesis director) / Lifshitz, Jonathan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains

Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains a major obstacle. Previous studies for recombinant protein production has utilized gram-negative hosts such as Escherichia coli (E. coli) due to its well-established genetics and fast growth for recombinant protein production. However, using gram-negative hosts require lysis that calls for additional optimization and also introduces endotoxins and proteases that contribute to protein degradation. This project directly addressed this issue and evaluated the potential to use a gram-positive host such as Brevibacillus choshinensis (Brevi) which does not require lysis as the proteins are expressed directly into the supernatant. This host was utilized to produce variants of Stock 11 (S11) protein as a proof-of-concept towards this methodology. Variants of S11 were synthesized using different restriction enzymes which will alter the location of protein tags that may affect production or purification. Factors such as incubation time, incubation temperature, and media were optimized for each variant of S11 using a robust design of experiments. All variants of S11 were grown using optimized parameters prior to purification via affinity chromatography. Results showed the efficiency of using Brevi as a potential host for domain antibody production in the Stabenfeldt lab. Future aims will focus on troubleshooting the purification process to optimize the protein production pipeline.
ContributorsEmbrador, Glenna Bea Rebano (Author) / Stabenfeldt, Sarah (Thesis director) / Plaisier, Christopher (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164830-Thumbnail Image.png
Description

Traumatic brain injury (TBI) is defined as an injury to the head that disrupts normal brain function. TBI has been described as a disease process that can lead to an increased risk for developing chronic neurodegenerative diseases, like frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A pathological hallmark

Traumatic brain injury (TBI) is defined as an injury to the head that disrupts normal brain function. TBI has been described as a disease process that can lead to an increased risk for developing chronic neurodegenerative diseases, like frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A pathological hallmark of FTLD and a hallmark of ALS is the nuclear mislocalization of TAR DNA Binding Protein 43 (TDP-43). This project aims to explore neurodegenerative effects of TBI on cortical lesion area using immunohistochemical markers of TDP-43 proteinopathies. We analyzed the total percent of NEUN positive cells displaying TDP-43 nuclear mislocalization. We found that the percent of NEUN positive cells displaying TDP-43 nuclear mislocalization was significantly higher in cortical tissue following TBI when compared to the age-matched control brains. The cortical lesion area was analyzed for each injured brain sample, with respect to days post-injury (DPI), and it was found that there were no statistically significant differences between cortical lesion areas across time points. The percent of NEUN positive cells displaying TDP-43 nuclear mislocalization was analyzed for each cortical tissue sample, with respect to cortical lesion area, and it was found that there were no statistically significant differences between the percent of NEUN positive cells displaying TDP-43 nuclear mislocalization, with respect to cortical lesion area. In conclusion, we found no correlation between the percent of cortical NEUN positive cells displaying TDP-43 nuclear mislocalization with respect to the size of the cortical lesion area.

ContributorsWong, Jennifer (Author) / Stabenfeldt, Sarah (Thesis director) / Bjorklund, Reed (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
Description

Traumatic brain injury (TBI), a neurological condition that negatively affects neural capabilities, occurs when a blunt trauma impacts the head. Following the initial injury that immediately impacts neural cell function and survival, a series of secondary injury events lead to substantial sustained inflammation for weeks to years post-injury. To develo

Traumatic brain injury (TBI), a neurological condition that negatively affects neural capabilities, occurs when a blunt trauma impacts the head. Following the initial injury that immediately impacts neural cell function and survival, a series of secondary injury events lead to substantial sustained inflammation for weeks to years post-injury. To develop TBI treatments that may stimulate regenerative processes, a novel drug delivery system that efficiently delivers the appropriate drug/payload to injured tissue is crucial. Hyaluronic acid (HA) hydrogels are attractive when developing a biomaterial for tissue reparation and regeneration. HA is a natural polymer with physicochemical properties that can be tuned to match the properties of the extracellular matrix (ECM) of the many tissues including the central nervous system (CNS). Here, the project objective was to develop a HA hydrogel system for local delivery of a biological payload; this objective was completed by employing a composite system with two parts. The first part is an injectable, shear-thinning bulk hydrogel, and the second is microgels for loading biological payloads. The bulk hydrogel was composed of cyclodextrin modified HA (Cd-HA) and adamantane modified HA (Ad-HA) that give rise to guest-host interactions that facilitate physical crosslinking. The microgel, composed of norbornene-HA (Nor-HA) and sulfated-HA, crosslink via chemical crosslinks upon activation of a UV photoinitiator. The sulfated-HA microgels facilitate loading of biological payloads by mimicking heparin binding sites via the conjugated sulfated group. Neuregulin I, an epidermal growth factor with neuroprotective properties, is one such protein with a heparin binding domain that may be retained in the sulfated-HA microgels. Specifically, the project focused on mechanical testing of this composite microgel/hydrogel system and also developing protein affinity assays.

ContributorsKylat, Anna (Author) / Stabenfeldt, Sarah (Thesis director) / Holloway, Julianne (Committee member) / Jensen, Gregory (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
193518-Thumbnail Image.png
Description
APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral

APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral ε3 allele. An imbalance in the generation and clearance of amyloid beta (Aβ) peptides has been hypothesized to play a key role in driving the disease. APOE4 impacts several AD-relevant cellular processes. However, it is unclear whether these effects represent a gain of toxic function or a loss of function, specifically as it relates to modulating amyloid beta (Aβ) levels. Here, a set of APOE knockout (KO) and APOE4 isogenic human induced pluripotent stem cells (hiPSCs) were generated from a parental APOE3 hiPSC line with a highly penetrant familial AD (fAD) mutation to investigate this with respect to Aβ secretion in neural cultures and Aβ uptake in monocultures of microglia-like cells (iMGLs). Conversion of APOE3 to E4 as well as functionally knocking APOE out from the APOE3 parental line, result in elevated Aβ levels in neural cultures, likely through multiple mechanisms including the altered processing of the precursor protein to Aβ called amyloid precursor protein (APP). In pure neuronal cultures, a shift in the processing of APP was observed with the Aβ-generating amyloidogenic pathway being favored in both APOE3 as well as APOE4 neurons compared to APOE KO neurons, with APOE4 neurons exhibiting a greater shift. In iMGLs derived from the isogenic hiPSC lines, expression of APOE, regardless of the isoform, lowered the uptake of Aβ. Overall, APOE4 modulates Aβ levels through distinct loss of protective and gain of function effects. Dissecting these effects would contribute towards a better understanding of the design of potential APOE-targeted therapeutics in the future.
ContributorsRajaram Srinivasan, Gayathri (Author) / Brafman, David (Thesis advisor) / Plaisier, Christopher (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2024
156801-Thumbnail Image.png
Description
Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD) are the leading causes of early onset dementia. There are currently no ways to slow down progression, to prevent or cure AD and FTD. Both AD and FTD share a lot of the symptoms and pathology. Initial symptoms such as confusion, memory loss,

Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD) are the leading causes of early onset dementia. There are currently no ways to slow down progression, to prevent or cure AD and FTD. Both AD and FTD share a lot of the symptoms and pathology. Initial symptoms such as confusion, memory loss, mood swings and behavioral changes are common in both these dementia subtypes. Neurofibrillary tau tangles and intraneuronal aggregates of TAR DNA Binding Protein 43 (TDP-43) are also observed in both AD and FTD. Hence, FTD cases are often misdiagnosed as AD due to a lack of accurate diagnostics. Prior to the formation of tau tangles and TDP-43 aggregates, tau and TDP-43 exist as intermediate protein variants which correlate with cognitive decline and progression of these neurodegenerative diseases. Effective diagnostic and therapeutic agents would selectively recognize these toxic, disease-specific variants. Antibodies or antibody fragments such as single chain antibody variable domain fragments (scFvs), with their diverse binding capabilities, can aid in developing reagents that can selectively bind these protein variants. A combination of phage display library and Atomic Force Microscopy (AFM)-based panning was employed to identify antibody fragments against immunoprecipitated tau and immunoprecipitated TDP-43 from human postmortem AD and FTD brain tissue respectively. Five anti-TDP scFvs and five anti-tau scFvs were selected for characterization by Enzyme Linked Immunosorbent Assays (ELISAs) and Immunohistochemistry (IHC). The panel of scFvs, together, were able to identify distinct protein variants present in AD but not in FTD, and vice versa. Generating protein variant profiles for individuals, using the panel of scFvs, aids in developing targeted diagnostic and therapeutic plans, gearing towards personalized medicine.
ContributorsVenkataraman, Lalitha (Author) / Sierks, Michael R (Thesis advisor) / Dunckley, Travis (Committee member) / Oddo, Salvatore (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2018
156541-Thumbnail Image.png
Description
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug screening, or patient specific disease modeling. Human induced pluripotent stem cells (hiPSC)-derived neural progenitor cells (hNPCs) have the ability to self-renew indefinitely and differentiate into the various neuronal and glial cell types of the CNS. In order to realize the potential of hNPCs, it is necessary to develop a xeno-free scalable platform for effective expansion and differentiation. Previous work in the Brafman lab led to the engineering of a chemically defined substrate—vitronectin derived peptide (VDP), which allows for the long-term expansion and differentiation of hNPCs. In this work, we use this substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Finally, VDP was shown to support the differentiation of hNPCs into functional astrocytes. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their derivatives in quantities necessary for basic and translational applications.
ContributorsMorgan, Daylin (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2018
154363-Thumbnail Image.png
Description
Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug discovery, development and validation. Ablation of dormant cancer will not only completely remove the cancer disease, but also will prevent any future recurrence. A novel hydrogel, Amikagel, was developed by crosslinking of aminoglycoside amikacin with a polyethylene glycol crosslinker. Aminoglycosides contain abundant amount of easily conjugable groups such as amino and hydroxyl moieties that were crosslinked to generate the hydrogel. Cancer cells formed 3D spheroidal structures that underwent near complete dormancy on Amikagel high-throughput drug discovery platform. Due to their dormant status, conventional anticancer drugs such as mitoxantrone and docetaxel that target the actively dividing tumor phenotype were found to be ineffective. Hypothesis driven rational drug discovery approaches were used to identify novel pathways that could sensitize dormant cancer cells to death. Strategies were used to further accelerate the dormant cancer cell death to save time required for the therapeutic outcome.

Amikagel’s properties were chemo-mechanically tunable and directly impacted the outcome of tumor dormancy or relapse. Exposure of dormant spheroids to weakly stiff and adhesive formulation of Amikagel resulted in significant relapse, mimicking the response to changes in extracellular matrix around dormant tumors. Relapsed cells showed significant differences in their metastatic potential compared to the cells that remained dormant after the induction of relapse. Further, the dissertation discusses the use of Amikagels as novel pDNA binding resins in microbead and monolithic formats for potential use in chromatographic purifications. High abundance of amino groups allowed their utilization as novel anion-exchange pDNA binding resins. This dissertation discusses Amikagel formulations for pDNA binding, metastatic cancer cell separation and novel drug discovery against tumor dormancy and relapse.
ContributorsGrandhi, Taraka Sai Pavan (Author) / Rege, Kaushal (Thesis advisor) / Meldrum, Deirdre R (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Caplan, Michael (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2016
152955-Thumbnail Image.png
Description
The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in

The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in the case of Traumatic Brain Injury (TBI) in rat animal model using imaging data acquired at 24-hours and 7-days post injury. The obtained parametric T2 and diffusion values from DTI (Diffusion Tensor Imaging) showed significant deviations in the signal intensities from the control and were potentially useful as an early indicator of the severity of post-traumatic injury damage. DTI was especially critical in distinguishing between the cytotoxic and vasogenic edema and in identification of injury regions resolving to normal control values by day-7. These results indicate the potential of quantitative MRI as a clinical marker in predicting prognosis following TBI. The second part of this thesis focuses on studying the effect of novel therapeutic strategies employing dendritic cell (DC) based vaccinations in mice glioma model. The treatment cohorts included comparing a single dose of Azacytidine drug vs. mice getting three doses of drug per week. Another cohort was used as an untreated control group. The MRI results did not show any significant changes in between the two treated cohorts with no reduction in tumor volumes compared to the control group. The future studies would be focused on issues regarding the optimal dose for the application of DC vaccine. Together, the quantitative MRI plays an important role in the prognosis and diagnosis of the above mentioned pathologies, providing essential information about the anatomical location, micro-structural tissue environment, lesion volume and treatment response.
ContributorsAnnaldas, Bharat (Author) / Kodibagkar, Vikram (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Bhardwaj, Ratan (Committee member) / Arizona State University (Publisher)
Created2014